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Integration of daytime radiative cooling and solar
heating for year-round energy saving in buildings
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The heating and cooling energy consumption of buildings accounts for about 15% of national

total energy consumption in the United States. In response to this challenge, many promising

technologies with minimum carbon footprint have been proposed. However, most of the

approaches are static and monofunctional, which can only reduce building energy con-

sumption in certain conditions and climate zones. Here, we demonstrate a dual-mode device

with electrostatically-controlled thermal contact conductance, which can achieve up to

71.6W/m2 of cooling power density and up to 643.4W/m2 of heating power density (over

93% of solar energy utilized) because of the suppression of thermal contact resistance and

the engineering of surface morphology and optical property. Building energy simulation

shows our dual-mode device, if widely deployed in the United States, can save 19.2% heating

and cooling energy, which is 1.7 times higher than cooling-only and 2.2 times higher than

heating-only approaches.
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The energy consumption in buildings accounts for over 30%
of total global final use and is responsible for 10% of global
greenhouse gas emissions1,2, which causes serious pro-

blems to both environment and economy. Statistics show that
the annual building energy cost is over $430 billion in the U.
S.1,2. Among this huge energy consumption, approximately 48%
is for space heating and cooling. Moreover, because of climate
change and population growth, it is predicted that heating and
cooling energy consumption for buildings will grow by 79% and
83%, respectively, over the period of 2010–20503. Therefore,
achieving high energy efficiency in buildings with minimum
carbon footprint has become an essential goal for sustainability
and calls for innovation of science and technology4. One grand
challenge is that most buildings are located in highly dynamic
weather that can compromise the efficacy of passive solar
heating or radiative cooling. These variations are both spatial
and temporal, which include diurnal and seasonal fluctuation,
climate zone dependence, energy price fluctuation, and so on1–3.
For example, heating degree days and cooling degree days can
commonly and quantitively describe the heating and cooling
demands of buildings5. Figure 1a shows the annual heating and
cooling degree days of 16 U.S. cities that represent the 16 cli-
mate zones. It can be found most cities need both heating and
cooling throughout the whole year. Taking Durham, North
Carolina as an example, the cooling consumption predominates
from May to October, and the rest 6 months are heating-
dominant (Fig. 1b). These statistics clearly manifest the need for
smart and renewable indoor thermal environmental manage-
ment that can switch between cooling and heating to cope
with various situations and to achieve higher energy saving all
year round.

To accomplish this goal, we resort to two infinite radiative
heat source and cold source: The Sun (5800 K) and the outer
space (3 K), respectively, to supply heating and cooling to
buildings without using fossil fuels. For ideal daytime radiative
cooling materials, the materials should have a high reflectance
in 200–2500 nm and high emissivity in 8–13 µm6. For ideal
solar heating, it is expected the material has high absorption in
200–2500 nm and low emissivity in >2500 nm7. Prior research
efforts for both solar heating8–11 and radiative cooling12–29

have yielded both high technological performance and deep
scientific understanding, which spans from a variety of fields,
including materials science, photonics and plasmonics, and
heat transfer. However, they are mostly static or quasi-dynamic
devices, which cannot completely solve the dynamic heating
and cooling demand problem effectively, especially in the
daytime12–29. For the few prior reports of dynamic solar and
mid-IR heat management, none of them demonstrate the ideal
properties for both modes—selective absorber for solar heating
and highly solar reflective layer for daytime radiative cool
cooling (Supplementary Table 1). In other words, the heating/
cooling performance was sacrificed for the dynamic tunability.
In this work, we demonstrate the dual-mode smart heat
managing device that possesses the ideal dual-mode optical
properties and can achieve up to 71.6 W/m2 of cooling power
density and up to 643.4 W/m2 of heating power density (over
93% of solar energy can be utilized) from experimental tests by
optimizing the optical, mechanical, and heat transfer properties
at various scales, ranging from nanoscale surface morphology
to device-level design. We also performed the rigorous calcu-
lation of building energy efficiency that encompasses most of
the major cities in the U.S. to create the energy saving map for
various climate zones. The map shows our dual-mode device
outperforms the solar-heating-only and radiative-cooling-only
devices, which can save 19.2% of building heating and cooling
energy on average.

Results
Concept of the dual-mode device. As shown in Fig. 1c, the dual-
mode heat managing device consists of a pair of rotary actuators
or rollers and a thin-film polymer composite that has solar
heating and radiative cooling functions side-by-side. In the
cooling part of the material, sunlight is mostly reflected, and the
thermal radiation to outer space through the atmospheric long-
wave infrared transmission window (8–13 µm) is maximized,
thereby achieving passive sub-ambient cooling that can con-
tribute either directly to the wall/roof via heat conduction or to
the heat exchanger that removes the heat from the chiller of air
conditioning system. In the heating part, most of the solar energy
is absorbed, and the radiation loss is strongly suppressed by the
selective absorber, which results in high heat flux to the building
envelope or the heat exchanger. When mode-switching is needed
because of the change in weather or in energy balance, the
actuators will pull the heating/cooling materials to move along
the track system and expose the desired part of the materials to
work in the ideal mode, and the rest of the material is rolled up
and collected (Supplementary Movie 1). We point out there are
four key points to successfully realize the dual-mode design: (1)
The material should have excellent solar heating and radiative
cooling properties to obtain high heating and cooling perfor-
mance that is on par with most state-of-the-art solar heating and
radiative cooling materials alone. (2) The material needs to have
low thermal resistance to fully utilize the generated heating/
cooling power or temperature difference. (3) The material needs
to be flexible and lightweight for the rolling actuation process and
durable to maintain the performance after cycles of switching. (4)
The thermal contact resistance needs to be minimized between
the soft and flexible material and the heated/cooled objects, i.e.,
roofs or heat exchanger. Although it is relatively straightforward
to reduce the thermal contact resistance between stationary
objects, it is not a trivial task for movable objects such as the
heating/cooling material. We will explain how to achieve these
four design requirements in the following paragraphs.

Electrostatically controlled thermal contact. For dual-mode
year-round building energy saving, as mentioned above, one
important aspect is to reduce the thermal contact resistance
between dual-mode material and the underlying object, other-
wise, the heating/cooling energy would not be transported and
fully utilized by the building. Although there are many effective
methods to ensure good thermal contacts, such as welding and
thermal interface materials30,31, these strategies are not applicable
in our system because the material needs to be frequently
attached/removed for mode-switching. Note that it is also not
ideal to increase the material weight and resort to larger grav-
itational force to reduce the contact resistance because that will
increase the thermal resistance of the material itself and the
required energy for actuation (Fig. 1c). As a result, if the dual-
mode material thin film is simply let in contact with the object,
the wrinkled texture leaves significant amounts of air gap in
between, and the contact resistance is extremely large (Fig. 2a,
left). Choosing a polyimide (PI) film as the substrate can partially
resolve the issue due to its capability to carry static charges
(Fig. 2a, middle). To further boost the performance, we apply
high voltage to the electrode and use the Maxwell pressure to
accomplish strong yet reversible thermal contact between the
material and the object (buildings or heat exchanger) (Fig. 2a,
right). To visually demonstrate this point, we placed a radiative
cooling material on a constant temperature copper plate and uses
the infrared camera to record the temperature change under
different applied voltages (Fig. 2b). The corresponding optical
images are in Supplementary Fig. 1. Quantitatively, we use a
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carbon black reference on the plate to obtain the temperature
difference between sample and substrate to calculate the contact
resistance (more details can be found in “Methods”). As shown in
Fig. 2c, the average thermal contact conductance significantly
increased as the applied voltage increased. The Maxwell pressure
increases not only the macroscopic contact area (Supplementary
Fig. 1) but also the microscopic area32, both of which result in the
reduction of overall thermal contact resistance. The average
thermal contact conductance can reach 9.5 × 102W/m2K at 2 kV

applied voltage., and the corresponding temperature difference is
suppressed to about 0.4 °C (Supplementary Fig. 2). Note that even
the voltage is high, the current is only about 0.07 mA, which is a
safe current for the human body33. Moreover, as shown in
Fig. 2d, the average thermal contact resistance between PI film
and substrate is almost unchanged after removing the voltage
source for 3 days (Ambient condition: 20 °C, 40% humidity) due
to the high electrical resistivity and hydrophobicity of PI. It can be
expected that this static electricity may not last for several
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Fig. 1 Concept of dual-mode device. a Annual heating and cooling degree days of 16 U.S. cities that represent the 16 climate zones. b Heating and cooling
degree days over 12 months in Durham, NC, USA. c Schematic of the dual-mode device at heating (left) and cooling (right) mode. The switchable building
envelope can utilize both renewable heating and cooling sources. We identify the four criteria of the dual-mode device: heating/cooling optical properties,
thermal resistance, rollability, and thermal contact.
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months, but in practical applications, the thermal contact can be
rebuilt by periodic “charging”, which is completed within a few
seconds each time. This ability to maintain the static charge effect
reduces the need to constantly supply high voltage and therefore
enhances the device operation efficiency and lifetime (analysis of
the impact of dirt and humidity can be found in Supplementary
Note 1). When switching is needed, a small reverse bias can be
applied to offset the static charges and release the dual-mode
material (Supplementary Movie 1).

Optical properties of heating and cooling materials. For dual-
mode year-round building energy saving, good thermal contact is
necessary but not sufficient conditions. The other important
aspect is to design a rollable film with low thermal resistance and
high heating/radiative cooling performance. Figure 3a illustrates
the structure of the dual-mode heating/cooling material. Besides
the strong tendency to retain surface static charges, PI film was
selected as the substrate also because of its excellent flexibility (for
mode-switching and rolling), smooth surface (for a smooth
metallic back reflector in cooling mode and for lowering the
thermal contact resistance), good mechanical property (for
reducing the thickness and the thermal resistance of substrate

itself). Figure 3b shows the drastically different visual appearance
of the two parts of the material: the heating part is black for
sunlight absorption, and the cooling part is mirror-like for sun-
light reflection. In the heating part, zinc film with copper particle
was deposited as heating material due to its excellent selective
absorption property7. The morphology and composition of heat-
ing material were charactered by scanning electron microscopy
(SEM) and X-ray photoelectron spectroscopy (XPS), as shown in
Fig. 3c, d. It can be found that clusters of approximately 1 µm in
size composed of copper and copper oxide nanoparticles were
uniformly deposited on Zn film (the optimized experiment can be
found in Supplementary Note 2). Here, copper is used as the
electrode for zinc electrodeposition to produce a uniform film
(Supplementary Fig. 3), and it also serves as the electrode to apply
electrostatic charges. On top of the PI film, a silver film of 300 nm
thick is deposited, followed by polydimethylsiloxane (PDMS).
This part of the material is designed for cooling because silver can
reflect the majority of solar radiation and PDMS has excellent
transparency in the visible regime and high thermal emissivity in
the mid-infrared regime. As shown in Fig. 3e, f, it can be found
that, with the increase of thickness of PDMS, the transmission of
the visible regime is almost unchanged, and the absorption of
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mid-infrared increases until 110 µm. Hence, 110-µm-thick PDMS
was selected for further testing. After parameter optimization
(Fig. 3e, f), as shown in Fig. 3g, the cooling part has 97.3%
reflectance in the wavelength range of 300–2000 nm and 94.1%
emissivity in 8–13 µm. For the heating part, 93.4% absorption
from 300–2000 nm and 14.2% emissivity were achieved. More-
over, the sample shows high mechanical flexibility and robustness.
As shown in Fig. 3h, the performance of our sample is almost
unchanged after 100 times rolling test. These standalone heating/
cooling properties lay the foundation for our high-performance
dual-mode heat management building envelope device.

Outdoor performances of the dual-mode device. To measure
both the solar heating and radiative cooling heat flux of the dual-
mode material, the Peltier-based performance measurement sys-
tem was set up. The dual-mode testing system consists of mainly
four parts: Peltier temperature control feedback system, data
acquisition system, high voltage power supply, and ambient
condition measurement system (Fig. 4a). As shown in Fig. 4b, the
temperature control system uses the Peltier device to supply

heating/cooling power to the copper plate, and a PID control
program is employed to minimize the temperature difference
between the copper plate and the ambient temperature, both of
which are measured by thermistors connected to the data
acquisition system and laptop. This method is designed to
minimize the convective heat loss to/from the ambience14,20. At a
steady state, the thermoelectrically-supplied heat flux equals the
solar heating (downward heat flux) or the radiative cooling
(upward heat flux), which is measured by the heat flux sensor
between the Peltier device and the copper plate. As shown in Fig.
4c, d, the switching process between heating and cooling can be
achieved by motors (more details can be found in Supplementary
Movie 1) or manually (see Fig. 4a). The outdoor experiment was
performed on the campus of Duke University at Durham, North
Carolina, on October 24, 2019. The solar power intensity,
humidity, and ambient temperature are measured in real-time to
calculate the model values to predict the heating/cooling heat
fluxes (Supplementary Fig. 4). The numerical model is an
essential tool to calibrate the performance with respect to the
local weather condition.
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The heating and cooling performance of the dual-mode device
is tested for six heating and cooling cycles (15 min per cycle), as
shown in Fig. 4e. The positive heat flux represents heating, and
the negative flux represents cooling. To demonstrate the
importance of thermal contact conductance in the practical
heating/cooling conditions, we fabricated three samples for
testing: the gold-coated PI film without electrostatic charges
(shown in red area), normal PI with zero voltage (yellow area),
and normal PI film with 2 kV high voltage treatment (green area).
As the electrostatic force increases, both heating and cooling heat
fluxes increase, manifesting the impact of thermal contact
conductance on the performance. The switching happens almost
instantaneously, and the system can return back to thermal
equilibrium within less than 100 s. Because of the small thickness
and low heat capacity of the dual-mode material, there is very
little thermal inertia to overcome, and the transient heat
conduction can quickly propagate to the object (in this case,
the heat flux sensor). In heating cycles, as shown in Fig. 4f, the
average heat flux of non-electrostatic PI and zero-external-voltage
PI only achieve 442 ± 13.3 and 548 ± 16.4W/m2, which is 70%
and 83% of the model values (633 ± 45.2 and 662.2 ± 48W/m2,
respectively). After applying high voltage, the device generates an
average heating power of 643.4W/m2), which means over 93% of

solar energy is utilized. Similarly, in cooling cycles, as shown in
Fig. 4g, the average cooling heat fluxes of non-electrostatic PI and
zero-external-voltage PI are 44.1 ± 1.3 and 52.5 ± 1.6W/m2,
which are 58% and 66% of the model values (76.1 ± 15.5 and
79.5 ± 16.1W/m2, respectively). After applying high voltage, the
measurement (average cooling power is about 71.6W/m2) and
model match well. More details about model calculation can be
found in Supplementary Note 3. This experiment clearly
demonstrates the effectiveness of using electrostatic force to
build the thermal contact between the dual-mode material and
the object and how it can boost the performance approaching the
theoretical prediction.

Building energy simulation. To quantitively predict the potential
impact of our dual-mode device on building energy efficiency, we
used EnergyPlus together with empirical material property data to
calculate the year-round energy saving for heating-only, cooling-
only, and dual-mode building envelopes. 16 cities were selected to
represent the 16 climate zones in the U.S2: Albuquerque, Austin,
Boulder, Chicago, Duluth, Durham, Fairbanks, Helena, Honolulu,
Las Vegas, Los Angeles, Minneapolis, New York City, Phoenix,
San Francisco, and Seattle. The corresponding energy-saving
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maps of heating-only and cooling-only are shown in Fig. 5a, b,
respectively (More details about calculation can be found in
Supplementary Note 3). These U.S. building energies saving maps
convey several aspects of information. Firstly, solar heating is
more beneficial in the north, and radiative cooling benefits more
in the south. This is understandable based on the latitude
dependence of climate. Secondly, radiative cooling saving is
slightly larger than solar heating saving. This can be attributed to:
(1) When the sunlight is relatively abundant, the required heating
load is small (Noting that we only considered real-time usage, and
did not consider any energy storage technology. It is expected that
if some storage technologies can be combined, the energy savings
will be significantly improved22.). (2) The radiative cooling
technology can provide cooling power throughout the entire 24 h
when space cooling is needed. The energy-saving map of the
dual-mode building envelope is then calculated and plotted in
Fig. 5c. It can be seen that the dual-mode device has significant
advantages in almost all climate zones in the U.S. compared with
single-mode devices. To further manifest the overall impact to the
U.S. building energy efficiency, we calculated the annual averaged
energy consumption saving in GJ (Fig. 5d, the more details about
the calculation process can be found in Supplementary Note 3).
The baseline of annual energy consumption for building heating
and cooling is 548 and 681 GJ, respectively. The calculation
indicates that the dual-mode device can save 236 GJ (19.2% of the

heating and cooling energy), which is 1.7 times higher than
cooling-only (138 GJ) and 2.2 times higher than heating-only
(106 GJ) devices.

Discussion
In this work, we experimentally and computationally demon-
strated the heating/cooling performance of the smart dual-mode
building envelopes, which is the outcome of the rational design of
optical, mechanical, and heat transfer properties. Such dynamic
tunability will gain more and more significance as the renewable
yet intermittent energy resources, such as solar and wind power,
are being incorporated into the electric grid. On the other hand,
climate change can also aggravate the spatial and temporal cli-
mate fluctuation in both frequency and magnitude, which calls
for more adaptive building energy efficiency solutions. Together
with our heating/cooling dual-modes device, we envision devices
with more energy modes, source-tracking functions, system-level
optimization algorithm, or smart grid integration, will form the
new design paradigm of zero-energy buildings.

Methods
Fabrication of heating material and cooling. Polyimide (PI) film (width (W):
13 cm, length (L): 29 cm, thickness (T): 25 µm) was selected as the substrate. Silver
film (W: 12.5 cm, L: 14 cm, T: 300 nm) and copper film (W: 12.5 cm, L: 14 cm, T:
300 nm) were deposited onto the PI film side-by-side using the evaporator (Kurt
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Lesker PVD 75). The silver film was coated with a layer of PDMS of about 110 µm
thick as the cooling material. On the copper film, a layer of zinc film of 1 µm thick
was electrodeposited (voltage: 2 V, anode: zinc metal, electrolyte: 0.25M ZnSO4

(aq)), followed by galvanic replacement reaction with 0.12 mM CuSO4(aq), and the
heating material was obtained after deionized water washing and drying.

Characterizations. The morphology of the heating material was characterized by
SEM (FEI Apreo) with the beam voltage/current of 5 kV/25 pA. The chemical
composition of the heating material was characterized using XPS (Kratos Analy-
tical Axis Ultra), equipped with a monochromatic Al Ka X-ray source. The
reflectance of cooling material and heating material was measured by the
UV–visible–near-infrared spectroscopy spectrometer with a calibrated BaSO4

integrating sphere (300–2000 nm, Agilent technologies, Cary 6000i) and the
Fourier Transform Infrared spectrometer with a diffuse gold integrating sphere
(4–18 µm, Thermo Scientific, iS50). The thermal images in our experiment were
captured by the FLIR E60 infrared camera.

Commercial building heating and cooling model. EnergyPlus version 9.2 was
utilized to predict energy consumption and saving with different boundaries.
Sixteen cities were selected to represent the 16 climate zones in the U.S.: Albu-
querque, Austin, Boulder, Chicago, Duluth, Durham, Fairbanks, Helena, Honolulu,
Las Vegas, Los Angeles, Minneapolis, New York City, Phoenix, San Francisco, and
Seattle. The post-1980 medium office model defined by the U.S. Department of
Energy34 was adopted for the calculation. The model building has three stories, and
the roof area is 1660 m2. For temperature boundary conditions, monthly internal
temperature has been set by the medium commercial building model. Hourly
weather data in the typical meteorological year35 was used as the external envir-
onment boundary condition. Baseline energy consumption for heating and cooling
was established by running this model across the U.S. Cooling load power per
month (Pload) could also be calculated in this process.

Thermal contact conductance measurement. Supplementary Fig. 5 shows the
equipment to quantitatively characterize the thermal contact conductance. From
the top surface, it involves reference (carbon glue of 80 µm thick)/sample, copper
plate (Width: 5 cm, Length: 5 cm, Thickness: 1.5 mm), heat flux sensor of 1 mm
thick (Electro Optical Components, Inc., A-04457) surrounded by glass with the
same thickness, PID-controlled Peltier device (TE Technology Inc., TC-36-25).
Thermal grease (Dow Corning, 340) was applied to ensure good thermal contact
among Cu plate, glass slides, heat flux sensor, and Peltier device. The sidewall of the
equipment is wrapped with polyurethane foam of about 5 cm thick to avoid heat
loss. A calibrated thermal camera (FLIR E60) was used to record the steady-state
temperature of reference and sample and therefore obtain temperature difference,
ΔT. Meanwhile, the heat flux sensor was used to measure the heat flux (q) in W/m2.
Assuming the temperature of reference is the same as the copper plate and neglect
the thermal resistance of the sample itself, we can calculate the thermal contact
conductance (hc) based on hc= q/ΔT.

Measurement of radiative cooling and solar heating power. The apparatus for
measuring solar heating and radiative cooling heat flux is similar to the one used to
measure thermal contact conductance but with a few operational differences. The
temperature of the copper plate is kept the same as the ambient temperature by using
the PID program, so the convective heat loss to/from the ambiance can be minimized.
Both temperatures are measured by the thermistors (TE Technology Inc., TC-36-25).
At steady-state, the supplied heating or cool power compensates for the radiative
cooling or solar heating, and the heat flux sensor measures the corresponding cooling
(upward heat flux) or heating (downward heat flux) power in W/m2.

Calibration of the testing apparatus was performed every time before
measurement. As shown in Supplementary Fig. 6a, a heater was put on the top
surface of the copper plate which is covered by a layer of polyurethane foam of
3 cm thick to avoid heat loss. The other part is the same with the testing system.
Supplementary Fig. 6b shows the voltage reading of the heat flux sensor when we
supply different heating power. The system quickly reaches a steady state after
<100 s. As shown in Supplementary Fig. 6c, due to the difference in thermal
resistance between the heat flux sensor and the glass slide, the nominal heat flux is
1.40 times larger than that measured by the heat flux sensor, which is independent
of the applied power. In other words, the heat transfer pathway from the top
copper plate through the heat flux sensor to the bottom Peltier device is more
resistive than that pathway through glass slides per unit area. This ratio is steady-
state and is independent of applied heating power, and it is used as the rescaling
factor for outdoor measurement for both radiative cooling and solar heating.

Data availability
The original data that support the findings of this study are available from the
corresponding author upon request.

Code availability
The code for the device performance and building energy consumption model can be
made available upon request.
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