
Joule

Article

Lithium Extraction from Seawater through Pulsed Electrochemical Intercalation

Pulsed electrochemical methods are developed to realize Li extraction from brines and seawater through intercalation. 1:1 Li to Na is recovered from seawater with Li selectivity of $\sim 1.8 \times 10^4$. The pulse-rest-reverse pulse-rest is also proven to stabilize the electrode structure during co-intercalation, and ten stable extraction cycles are demonstrated.

Chong Liu, Yanbin Li, Dingchang Lin, ..., Tong Wu, Yi Cui, Steven Chu

yicui@stanford.edu (Y.C.) schu@stanford.edu (S.C.)

HIGHLIGHTS

Li extraction from seawater is demonstrated using electrochemical intercalation

Pulsed electrochemical methods are developed to increase the selectivity of Li to Na

1:1 Li to Na was recovered after the electrochemical extraction from seawater

Liu et al., Joule 4, 1459–1469 July 15, 2020 © 2020 Published by Elsevier Inc. https://doi.org/10.1016/j.joule.2020.05.017

Joule

Lithium Extraction from Seawater through Pulsed Electrochemical Intercalation

Chong Liu,^{1,2} Yanbin Li,¹ Dingchang Lin,¹ Po-Chun Hsu,^{3,7} Bofei Liu,¹ Gangbin Yan,² Tong Wu,¹ Yi Cui,^{1,4,*} and Steven Chu^{5,6,8,*}

SUMMARY

It is highly attractive to develop efficient methods to directly extract Li from seawater to secure the supply of Li. However, high concentration of Na in the seawater poses a great challenge in Li extraction. Here, we developed pulsed-rest and pulse-rest-reverse pulse-rest electrochemical intercalation methods with TiO₂-coated FePO₄ electrodes for Li extraction. The method can lower the intercalation overpotential and successfully boost the Li selectivity. Moreover, the pulse-rest-reverse pulse-rest method can also promote electrode crystal structure stability during the co-intercalation of Li and Na and prolong the lifetime of the electrode. We demonstrated 10 cycles of successful and stable Li extraction with 1:1 of Li to Na recovery from authentic seawater, which is equivalent to the selectivity of ~1.8 × 10⁴. Also, with lake water of higher initial Li/Na ratio of 1.6 × 10⁻³, we achieved Li extraction with more than 50:1 of Li to Na recovery.

INTRODUCTION

The fast development of energy storage technology and electronics has boosted global lithium (Li) demand to ~180,000 tons of Li carbonate equivalent in 2015, with projections as high as 1.6 M tons by $2030^{1,2}$ where 1.4 M tons of the demand will be used in Li-ion batteries for electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs).³ By 2030, 28% of light-duty vehicles may be EVs and PHEVs, with ~ 80% EVs and by 2040, the majority of new light-duty vehicles is driven, in part, by concerns about climate change due to global greenhouse gas emissions and rising health concerns over particulate matter below 2.5 μ m (PM_{2.5}) and NO_x emissions from vehicles. Thus, there are a number of incentives to develop cost-effective technology to develop methods to extract Li economically from a wider set of resources.

There are 43.6 M tons of Li on land sources, including 16.7 million tons in ores and 26.9 million tons in brines.⁵ The current method to extract Li from brines, which typically have Li concentrations between 100 and 1,000 ppm is based on evaporation and chemical precipitation which is highly time-intensive due to the pre-treatment process to concentrate Li ions. In contrast, there are 5,000 times more Li present in the seawater of above 200 billion tons,⁶ but where Li concentration is only 0.180 ppm. More recently, Li obtained from water produced in oil and gas extraction has also been considered.⁷ In the US, 2.5 billion gallons of water are produced each year during oil extraction.⁸ Assuming a concentration of 100 ppm Li in the produced water, there are 0.350 million tons of Li in the produced water that potentially be recovered each year.

Context & Scale

Li demand will increase dramatically in the coming decades due to global climate change and energy crisis. Seawater contains 5,000 times more Li than the combination of ore and brine-based resources. However, the chemically similar Na is four orders of magnitude more concentrated than Li, which poses a significant challenge in Li extraction selectivity. Here, we develop pulsed-rest and pulserest-reverse pulse-rest electrochemical methods using intercalation chemistry to extract Li from seawater with TiO₂-coated FePO₄ electrodes. The pulsed electrochemical methods can lower the intercalation overpotential and successfully boost the Li selectivity. Moreover, the pulse-rest-reverse pulse-rest method can also promote electrode crystal structure stability during the cointercalation of Li and Na and prolong the lifetime of the electrode. We demonstrate successful and stable Li extraction with 1:1 of Li to Na recovery from authentic seawater.

In addition to the refining of Li ores and the evaporation and chemical precipitation of brines, there are research efforts to develop sorbent materials such as MnO_2^{9} or $H_2TiO_3^{10}$ to adsorb Li. Also, there was work to develop dialysis membranes for Li extraction.^{11,12} However, the performance still needs to be improved greatly. Electrochemical Li extraction emerges as an attractive route for Li extraction, which can potentially utilize renewable energy to power the electrochemical processes. In electrochemical Li extraction, Li can be driven by an electric current into electrode materials^{13–16} or through Li selective membranes.¹⁷ For most of the study using electrode materials, the focus was on highly concentrated Li brine with Li to Na concentration ranging from 0.001 to 1. Real seawater condition with much lower Li concentration is rarely tested. A more efficient Li extraction technology that directly extracts Li from seawater, or from produced water or brine lake sources without the time-consuming evaporation process would greatly increase the Li production capacity to meet the anticipated demand for Li in the coming decades.

Here, we report the use of the TiO₂-coated LiFePO₄ electrode combined with a pulsed electrochemical method to extract Li with high selectivity through intercalation chemistry. The intercalation chemistry naturally provides a high selectivity of Li to Na because Li can provide higher structural stability in FePO₄ and has faster ion diffusivity.^{18,19} The TiO₂ coating was used to increase the interface contact between the working electrode and seawater. The pulsed electrochemical method lowered the overpotential to drive the intercalation of Li into the FePO₄ crystal structure hence increase the selectivity and structural stability. Starting from an authentic seawater sample obtained at Half Moon Bay, California, we have demonstrated 10 cycles of stable Li extraction with 1:1 Li/Na ratio. This is equivalent to a molar selectivity as high as 1.8 × 10⁴. Besides seawater, we also demonstrated the use of electrochemical intercalation method to extract Li from a higher initial Li to Na molar ratio solutions as well as lake water. We achieved 50.2% ± 0.78%, 94.3% ± 4.0%, ~100%, and 98.1% ± 1.0% Li/(Li + Na) recovery from solution which has Li/Na ratio of 5.4 × 10⁻⁵, 5.0 × 10⁻⁴, 4.0 × 10⁻³, and natural salt lake water, respectively.

RESULTS

The procedure of extracting Li from seawater using electrochemical intercalation is illustrated in Figure 1. In the first step, a host material was used as the working electrode to allow Li intercalation into the crystal structure. The host material selection must follow the rules that during lithiation and delithiation, its potential should be within the water stable window. Seawater has a pH of 8.2, which sets the water stable window to be -0.48 V versus standard hydrogen electrode (SHE) to avoid H₂ evolution and 0.75 V versus SHE to avoid O₂ evolution (as shown in Figure 1A).^{20–22}

In this work, we chose FePO₄ from delithiated LiFePO₄ as the working electrode. The potential plateau of lithiation and delithiation with 1M Li salt solution for FePO₄ is \sim 3.4 V versus Li metal, which is 0.36 V versus SHE and is stable in seawater.²³ Moreover, there is also selection criteria for the pairing counter electrode during the Li extraction cycle. First, an O₂ evolution electrode needs to be eliminated due to several reasons. (1) It can induce significant pH change to the seawater environment. Li-ion (\sim 25 µM) comparing with hydroxide ion (\sim 1 µM) has a higher concentration in seawater, even if 10% of the Li is extracted, it would induce a significant acidification effect to seawater environment. (2) The dissolved O₂ would diffuse to the negative electrode and get reduced to peroxide species. The O₂ reduction reaction in seawater (0.20 V versus SHE)²⁰ happens at a slightly higher potential to Li intercalation when considering the real seawater Li concentration of 180 ppb so that the O₂

¹Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA

²Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA

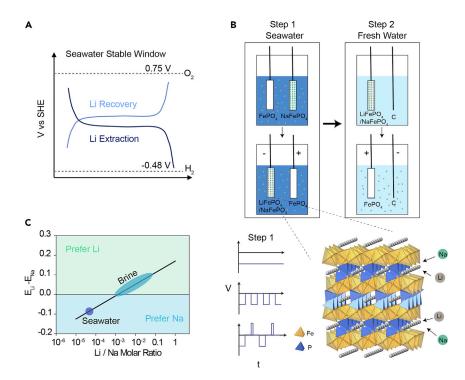
³Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA

⁴Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

⁵Department of Physics, Stanford University, Stanford, CA 94305, USA

⁶Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA

⁷Present address: Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA


⁸Lead Contact

*Correspondence: yicui@stanford.edu (Y.C.), schu@stanford.edu (S.C.)

https://doi.org/10.1016/j.joule.2020.05.017

Joule Article

Figure 1. Li Extraction from Seawater by Electrochemical Intercalation

(A) Schematics showing the water stability window marked by H_2 and O_2 evolution reactions in seawater.

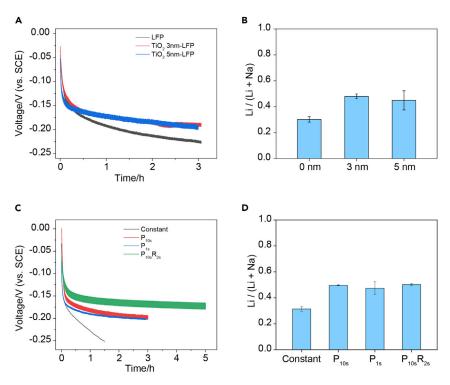
(B) Schematics showing the Li extraction steps. First, FePO₄ electrode and NaFePO₄ electrode were used as working and counter electrodes in seawater for Li intercalation with a high selective preference for Li over Na. Then, the working electrode was regenerated in a fresh solution to recovery the Li extracted. Voltage profiles used in different electrochemical methods (continuously on, pulsed-rest, and pulsed-rest-reverse pulse-rest) are shown.

(C) Calculation of the Li and Na intercalation potential difference at difference initial Li to Na molar concentration using $FePO_4$ electrode.

reduction reaction would reduce the faradic efficiency of Li extraction on the negative electrode (as shown in Figure S1). (3) The peroxide species would damage the FePO₄ electrode permanently.²⁴

We chose NaFePO₄ as the counter electrode. Na will be released into seawater during the Li extraction cycle. Since the amount of Na released from the electrode is in much less concentration comparing with background Na, this could minimize the environmental impact to seawater. During the Li extraction step, the two electrodes were put into seawater and the system was kept in an N₂ atmosphere (Figure 1B). FePO₄ was the negative electrode to allow Li ions to intercalate into the crystal structure. In the second step, the FePO₄ electrode filled with Li will be placed into a fresh water-based recovery solution, and Li will be released into the solution by a reverse bias while the FePO₄ electrode was regenerated.

The challenge of Li extraction from seawater lies in the background of Na ions. Li has a similar chemistry to Na but a much lower concentration. FePO₄ has a Li intercalation potential of ~0.36 V versus SHE while it has a Na intercalation potential of ~0.19 V versus SHE.²⁵ This thermodynamic preference of Li intercalation could compensate for a molar concentration difference of ~0.0012 Li/Na. In brines or salt lake water, where the Li to Na concentration ratio is ~ 0.0018 to 0.3, the intercalation chemistry is supposed to have near 100% selectivity from the calculation as shown in Figure 1C.


In the case of seawater, the concentration of Li is ~ 0.180 ppm comparing with ~10,800 ppm for Na. The low concentration ratio of 5 × 10^{-5} of Li/Na would not compensate for the thermodynamic preference of Li intercalation, so the Na intercalation would compete with Li to be intercalated into the electrode. On the other hand, the kinetics of Li and Na intercalation offers another preference for Li. The activation barrier difference between Li and Na diffusion is ~0.05–0.2 eV with Na possessing higher activation energy barrier.^{19,26,27} Considering the competition between Li and Na, different strategies were taken to promote Li intercalation in this paper.

First, to increase the electrode and electrolyte (seawater) contact, we introduce a hydrophilic coating to the surface of FePO₄ after the electrode fabrication. Here, we chose amorphous TiO₂ as the coating material which was deposited by atomic layer deposition (ALD). It was shown that the diffusivity of Li in amorphous TiO₂ was on the same order as FePO₄; therefore, the thin coating would not increase the activation barrier for Li diffusion.²⁸ Also, the TiO₂ has a smaller Li diffusion barrier comparing with Na, which could help improve the selectivity of Li to Na.²⁹ Two thickness, 3 and 5 nm of TiO_2 coating were investigated compared with the bare FePO₄ electrode. The thin layer of TiO₂ coating did not change the electrode conductivity significantly as shown in the electrochemical impedance spectroscopy (Figure S2). The electrode resistance was 1.53, 6.08, and 4.65 Ω for 0, 3, and 5 nm of TiO₂ coated FePO₄. During the seawater lithiation cycle, it is obvious from the potential curve (shown in Figure 2A) that both 3 and 5 nm of TiO₂ coatings have lowered the overpotential for Li insertion. We then tested the Li and Na recovered from the electrode through a delithiation process in freshwater solution. It is shown in Figure 2B that the Li/(Li + Na) molar ratio was $30.2\% \pm 2.1\%$, $48.0\% \pm 1.9\%$, and $44.9\% \pm 7.4\%$ for FePO₄ electrode with 0, 3, and 5 nm of TiO₂ coating. Since the 3 nm TiO₂ coating gave the highest selectivity, we adopted this condition for all the later electrochemical method selection tests. The coating test points to the fact that the activation barrier for Na intercalation is higher than Li so that lowering the overpotential could help promote Li intercalation.

The next strategy we adopted to improve the selectivity of Li extraction is optimizing the electrochemical lithiation method. Different electrochemical intercalation method would lead to different overpotentials to drive the Li extraction process. We compared the constant current lithiation method to pulse-rest and pulse-restreverse pulse-rest methods. For the pulse-rest method, 10 s lithiation with 10 s rest (P_{10s}) and 1 s lithiation with 1 s rest (P_{1s}) was tested. The potential curves are shown in Figure 2C. For the same capacity of Li extraction, both pulse-rest method P_{10s} and P_{1s} showed \sim 0.05 V smaller overpotentials than the constant current method. The electrode impedance was similar in all tests (shown in Figure S3). As a result, the recovered Li/(Li + Na) molar ratio was higher in pulsed electrochemical methods P_{10s} and P_{1s} of 49.7% \pm 0.35% and 47.4% \pm 5.1% than that in the constant current method of 31.4% \pm 1.7% (Figure 2D). The pulsed lithiation method gave the electrode a rest period for Li and Na to redistribute among all the particles in the electrode and ensured a more uniform Li/Na content in all the particles, which improved the electrode homogeneity and reduced the overpotential of intercalation.^{30–32} Besides the pulse-rest method, the pulse-rest-reverse pulse-rest method was also tested. In this method, in one cycle there is both forward pulse and reverse pulse. The forward pulse and its rest periods are both 10 s and the reverse pulse with the same amplitude and its rest periods are 2 and 10 s ($P_{10s}R_{2s}$), respectively. The reverse pulse is often used in the electrochemical process to create a more uniform concentration front.^{33,34} The selectivity of this pulse-rest-reverse pulse-rest method was 50.2% \pm 0.78% as in Figure 2D. It is also higher than the constant current method. The introduction of pulsed electrochemical methods was successful in

Joule Article

Figure 2. Li Extraction Selectivity

(A) Intercalation potential curves in seawater of ${\sf FePO}_4$ electrodes with 0, 3, and 5 nm of ${\sf TiO}_2$ coating.

(B) Li selectivity results using FePO₄ electrodes with different thicknesses of TiO₂ coatings. (C) Intercalation potential curves in seawater using FePO₄ electrodes with 3 nm of TiO₂ coating with different electrochemical methods: constant current, P_{10s} , P_{1s} , and $P_{10s}R_{2s}$.

(D) Li selectivity results using $FePO_4$ electrodes with 3 nm of TiO_2 coating with different

electrochemical methods. Error bars represent the standard deviation of at least three replicate measurements.

facilitating Li intercalation rather than Na. In the three pulsed methods, the first cycle selectivity was similar to an extraction ratio of Li/Na of \sim 1:1 which is equivalent to the selectivity of Li to Na of 1.8 × 10⁴ from seawater.

The cycle stability of the three pulse electrochemical methods (P_{10s} , P_{1s} , and $P_{10s}R_{2s}$) was also studied. Identical electrodes were cycled 10 times for each pulsed electrochemical method. Each cycle involved the Li extraction and recovery process. Both Li selectivity and faradic efficiency were measured. During the cycle tests, these three methods showed an obvious difference in stability as shown in Figure 3. In both pulse methods P_{10s} and P_{1s} , the selectivity and Coulombic efficiency showed signs of decline. The decline was faster in the case of P_{1s} . The selectivity started to decline at the 5th cycle from a Li/(Li + Na) molar ratio of \sim 50% to 31.9% \pm 0.40%. At the 7th cycle, the Li/(Li + Na) molar ratio was only 13.5% \pm 0.68%. In P_{10s}, the selectivity started to decline at the 6th cycle and before the 10th cycle, the selectivity was between 30% and 36%. In the 10^{th} cycle, the selectivity dropped to $10.8\% \pm 0.97\%$. However, for the case of the P_{10s}R_{2s} method, there was no sign of instability of the electrode, and the selectivity was \sim 50% for 10 cycles. The decline in electrode cycle stability in P_{10s} and P_{1s} methods could result from the co-intercalation behavior of Li and Na. During co-intercalation, the diffusivity of Li and Na were different, and this could lead to local jamming from the slower diffusion Na. In contrast, the reverse pulse and rest period would allow Li and Na to redistribute and decrease the local stress of the electrode. Also, we hypothesize that

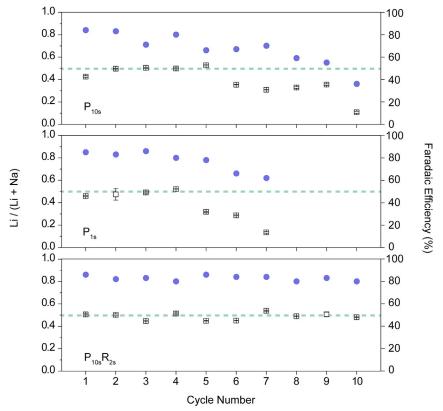
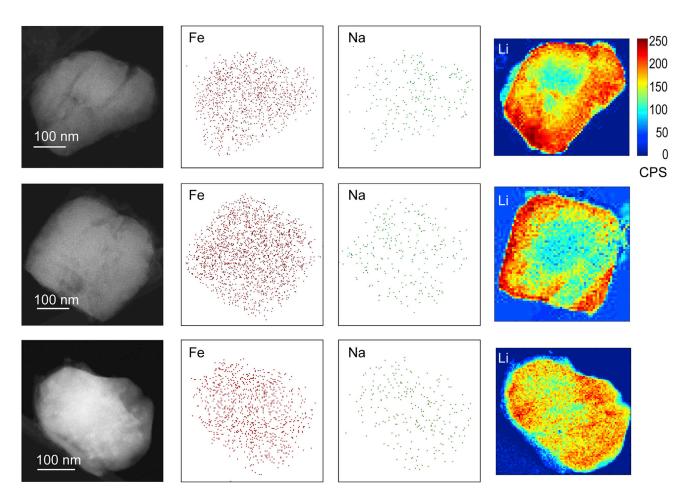


Figure 3. Li Selectivity and Faradic Efficiency Results for the Stability Test Using Different Electrochemical Methods

Error bars represent the standard deviation of three replicate measurements.


the reverse pulse can help remove Na from the electrode because Na deintercalation has a lower potential than Li deintercalation. This is beneficial to enhance the electrode's long-term stability.³⁰ Also, we did a stability test on the TiO₂-coated LiFePO₄ by directly soaking the electrode in seawater for 24 h and measured the electrode Li and Fe content by dissolution. From the Li and Fe concentration, we calculated back the mass loading of the LiFePO₄, which is similar to the original mass loading we measured with an error of -2% and +4%, respectively.

The FePO₄ particles were characterized in the $P_{10s}R_{2s}$ method using both scanning electron microscopy (SEM) (Figure S5) and transmission electron microscopy (TEM) (Figure 4). Another intercalation was done after the 10th cycle for electrode characterization. From the SEM images, there is only a slight change in the electrode morphology. After SEM imaging, the FePO₄ particles were sonicated off the electrode for TEM characterization. Single-particle mapping is shown in Figure 4. Three particles are shown to represent the particles on the electrode. Li element was mapped with electron energy loss spectroscopy (EDX). Fe mapping was used as a reference for LiFePO₄.

The Li EELS signal showed that the intercalation followed the phase transformation similar to sole Li intercalation in battery cathodes with edges of higher concentration of Li.^{35–37} The Na mapping did not give the same feature where edges have higher concentrations. However, it was clear from the mapping that Na existed uniformly in

Joule Article

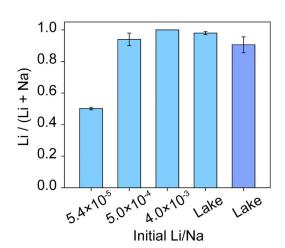

CellPress

Figure 4. TEM Characterization of FePO₄ **Particles after 10 Cycles of Li Extraction and Recovery Using P**_{10s}**R**_{2s} **Electrochemical Method.** From left to right: TEM image of FePO₄ particle, Fe EDX elemental mapping, Na EDX elemental mapping, and Li EELS elemental mapping.

the particle surface, which points to the fact of Li and Na co-exist in the structure. The co-intercalation was also confirmed using X-ray diffraction (XRD) shown in Figure S6. The electrode showed both peaks from LiFePO₄ and NaFePO₄. From the morphology aspect, the particle remained its integrity after cycling, but small cracks were noticed on the particle, which could come from the electrode expansion after intercalation.

Finally, the electrochemical intercalation was demonstrated to work for artificial brines with different Li to Na molar ratio and for salt lake water obtained from Salt Lake in Utah. Artificial solutions with Li to Na ratio of 5.4×10^{-5} , 5.0×10^{-4} , and 4.0×10^{-3} were tested. Li to Na ratio of 5.4×10^{-5} is similar to the seawater case. As shown in Figure 5, using the same P_{10s} electrochemical method, the selectivity was $50.2\% \pm 0.78\%$, $94.3\% \pm 4.0\%$, and $\sim 100\%$ (Na below detection limit), respectively. This points to the thermodynamic preference of Li to Na in intercalation to FePO₄ material as shown in Figure 1C. The repetitive extraction using artificial solution with Li to Na ratio of 5.4×10^{-5} is shown in Figure S4. We also collected lake water from Salt Lake in Utah. Through inductively coupled plasma mass spectrometry (ICP-MS) measurement, the lake water contains 21.4 ppm of Li and 4.26×10^4 ppm of Na. Both Li and Na concentrations were higher than that in seawater and the Li/Na ratio is 1.6×10^{-3} . At the same P_{10s} electrochemical method where the current is C/5, the recovered Li/(Li + Na) molar ratio was

CellPress

Figure 5. Li Selectivity Results Using P_{10s} Electrochemical Methods and FePO₄ Electrode with 3-nm TiO₂ Coating in Solutions with Different Initial Li to Na Molar Ratio and Authentic Lake Water Joule

For lake water, two different current rates were tested. C/5 current rate result was shown in light blue (left), and 1C current rate result was shown in darker blue (right). Error bars represent the standard deviation of three replicate measurements.

 $98.1\%\pm1.0\%$. A higher current rate of 1 C for the P_{10s} electrochemical method was also tested. The recovered Li/(Li + Na) molar ratio was 90.6% \pm 4.7%. The higher current test represents the case when higher productivity was needed, and the selectivity result showed great potential for the electrochemical Li extraction to be both selective and with high yield in brine mining. In a real application, we expect an additional step similar to that in brine mining to be added after the current recovery step to precipitate Li to Li_2CO_3 for further use.

DISCUSSION

In summary, we demonstrated the successful extraction of Li from both seawater and salty lake water with the FePO₄ electrode using the electrochemical intercalation method. We showed that by lowering the intercalation potential through the hydrophilic coating and also pulsed electrochemical method intercalation, Li selectivity can be enhanced. By using the pulse-rest-reverse pulse-rest method, we achieved 10 cycles of stable Li extraction from seawater with 1:1 Li/Na recovery, which is equivalent to the high selectivity of 1.8×10^4 . Although this demonstration of electrochemical Li extraction from seawater shows great potential, deployment of this method would require 100 to 1,000 s of electrochemical cycles before electrode replacement is required to maintain high faradic efficiency. Hence, even a small amount of intercalation of Na into the electrode material after repeated cycles would lead to stress cracks and a loss of electrochemical capacity. We seek to develop improved hydrophilic interface coatings that will serve as a barrier against Na intrusion into the electrode. Furthermore, the filtering of micro, nano, and molecular materials present in seawater (or alternatively salt lake water or produced water from oil recovery) would be necessary to prevent long-term fouling of the electrodes. We believe these obstacles are surmountable, and this work offers the prospect of securing an adequate supply of Li to allow the massive deployment of EVs.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for resources and materials should be directed to and will be fulfilled by the Lead Contact, Steven Chu (schu@stanford.edu).

Materials Availability

This study did not generate new unique materials.

Data and Code Availability

This study did not generate code.

Electrode Synthesis and Electrochemical Method

The LiFePO₄ electrodes were made by coating a paste containing 80% LiFePO₄ (MTI), 10% polyvinylidene fluoride (PVDF, MTI), and 10% of conductive carbon black (MTI) onto a 1 cm² carbon felt substrate (99.0%, 3.18-mm thick, Alfa Aesar). TiO_2 was coated onto the LiFePO₄ electrode using ALD at 200°C, 0.4 Å/cycle in O₂ plasma (Fiji 2, Cambridge Nanotech) with a tetrakis(dimethylamido)titanium (IV) precursor heated at 75°C. To obtain the TiO2-FePO4 electrode for Li extraction, the electrode was delithiated first in MgCl₂ solution with C/5 rate to a cutoff voltage of 0.2 V versus saturated calomel electrode (SCE). Seawater was collected at Half Moon Bay, California and filtered by a 0.2-µm filtration unit (Corning) to remove particles and microorganisms. Li extraction was carried out in a 300 mL filtered seawater in the N2 atmosphere using either direct current or pulsed electrochemical method at a current rate of C/5 with SCE as the reference electrode and NaFePO₄ as the counter electrode. The NaFePO₄ electrode was obtained and regenerated by running the intercalation process using a FePO4 electrode in 1 M NaCl solution. In the cycle stability test, for each cycle, the intercalation capacity used was 20% to ensure that Li concentration in seawater did not decrease to below 60% of its initial concentration.

Li Extraction Selectivity

After finishing the Li extraction in seawater and other mentioned conditions, the electrode was delithiated in $MgCl_2$ solution of 50 mM with constant current of C/5 rate to a cutoff voltage of 0.2 V versus SCE with a graphite rod (Sigma-Aldrich, 99.995%) as the counter electrode. The solution before and after the delithiation process was collected for ICP-MS for Li and Na concentration measurement.

Characterization

SEM (FEI Nova NanoSEM 450) with beam energies of 5 kV was used for imaging. All TEM characterizations were carried out using a FEI Titan environmental (scanning) transmission electron microscope (E(S)TEM) operated at 300 kV. The microscope was equipped with an aberration corrector in the image-forming (objective) lens, which was tuned before each sample analysis. XRD (PANalytical Material Research Diffractometer) was carried out using Cu K α radiation.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.joule. 2020.05.017.

ACKNOWLEDGMENTS

We acknowledge the Stanford facilities, SNSF and EMF, for characterization. We acknowledge Peter Maurer for collecting the lake water for us. Y.C. acknowledged the support to initiate this research by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (contract no. DE-AC02-76SF00515).

AUTHOR CONTRIBUTIONS

C.L., S.C., and Y.C. conceived the concept; C.L. designed the experiments, synthesized the electrodes, and conducted the electrochemical tests and selectivity

CellPress

measurements; Y.L. conducted the TEM characterization; D.L. helped with electrode synthesis; P.-C.H. and G.Y. helped with electrochemical measurement; B.L. helped with ALD coating; T.W. and G.Y. helped with ICP-MS test; C.L., S.C., and Y.C. analyzed the data and co-wrote the paper. All the authors discussed the whole paper.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: February 22, 2020 Revised: April 22, 2020 Accepted: May 28, 2020 Published: July 1, 2020

REFERENCES

- 1. Naumov, A.V., and Naumova, M.A. (2010). Modern state of the world lithium market. Russ. J. Non-ferrous Metals 51, 324–330.
- Martin, G., Rentsch, L., Höck, M., and Bertau, M. (2017). Lithium market research – global supply, future demand and price development. Energy Storage Mater. 6, 171–179.
- McKerracher, C., Izadi-Najafabadi, A., O'Donovan, A., Albanese, N., Soulopolous, N., Doherty, D., Boers, M., Fisher, R., Cantor, C., Frith, J., et al. (2019). Electric vehicle outlook Bloomberg NEF. https://about.bnef.com/ electric-vehicle-outlook/.
- EV-Volumes the Electric Vehicle World Sales Database. http://www.ev-volumes. com/country/total-world-plug-in-vehiclevolumes/.
- Grosjean, C., Miranda, P.H., Perrin, M., and Poggi, P. (2012). Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sustain. Energy Rev. 16, 1735–1744.
- Bardi, U. (2010). Extracting minerals from seawater: an energy analysis. Sustainability 2, 980–992.
- McEachern, P. (2017). Lithium recovery from oilfield produced water brine & wastewater Treatment, MGX Minerals. https://webfiles. thecse.com/sedar_filings/00033313/ 1704260945589396.pdf.
- Allison, E., and Mandler, B. (2018). Petroleum and the Environment, 102 (The American Geosciences Institute). https:// www.americangeosciences.org/sites/ default/files/AGI_Petroleum Environment_web.pdf.
- Chitrakar, R., Makita, Y., Ooi, K., and Sonoda, A. (2014). Synthesis of iron-doped manganese oxides with an ion-sieve property: lithium adsorption from Bolivian brine. Ind. Eng. Chem. Res. 53, 3682–3688.
- Chitrakar, R., Makita, Y., Ooi, K., and Sonoda, A. (2014). Lithium recovery from salt lake brine by H₂TiO₃. Dalton Trans. 43, 8933–8939.

- Hoshino, T. (2015). Innovative lithium recovery technique from seawater by using world-first dialysis with a lithium ionic superconductor. Desalination 359, 59–63.
- Hoshino, T. (2013). Preliminary studies of lithium recovery technology from seawater by electrodialysis using ionic liquid membrane. Desalination 317, 11–16.
- Pasta, M., Battistel, A., and La Mantia, F. (2012). Batteries for lithium recovery from brines. Energy Environ. Sci. 5, 9487.
- Trócoli, R., Battistel, A., and Mantia, F.L. (2014). Selectivity of a lithium-recovery process based on LiFePO4. Chemistry 20, 9888–9891.
- Trócoli, R., Battistel, A., and La Mantia, F. (2015). Nickel hexacyanoferrate as suitable alternative to Ag for electrochemical lithium recovery. ChemSusChem 8, 2514–2519.
- Kim, J.S., Lee, Y.H., Choi, S., Shin, J., Dinh, H.C., and Choi, J.W. (2015). An electrochemical cell for selective lithium capture from seawater. Environ. Sci. Technol. 49, 9415–9422.
- Yang, S., Zhang, F., Ding, H., He, P., and Zhou, H. (2018). Lithium metal extraction from seawater. Joule 2, 1648–1651.
- Zhu, Y., Xu, Y., Liu, Y., Luo, C., and Wang, C. (2013). Comparison of electrochemical performances of olivine NaFePO₄ in sodiumion batteries and olivine LiFePO₄ in lithium-ion batteries. Nanoscale 5, 780–787.
- Dixit, M., Engel, H., Eitan, R., Aurbach, D., Levi, M.D., Kosa, M., and Major, D.T. (2015). Classical and quantum modeling of Li and Na diffusion in FePO₄. J. Phys. Chem. C 119, 15801–15809.
- Wood, P.M. (1988). The potential diagram for oxygen at pH 7. Biochem. J. 253, 287–289.
- Liu, C., Kong, D., Hsu, P.C., Yuan, H., Lee, H.W., Liu, Y., Wang, H., Wang, S., Yan, K., Lin, D., et al. (2016). Rapid water disinfection using vertically aligned MoS₂ nanofilms and visible light. Nat. Nanotechnol. 11, 1098–1104.
- 22. Liu, C., Hsu, P.-C., Xie, J., Zhao, J., Wu, T., Wang, H., Liu, W., Zhang, J., Chu, S., and Cui, Y. (2017). A half-wave rectified

alternating current electrochemical method for uranium extraction from seawater. Nat. Energy *2*, 17007.

- Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B. (1997). Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194.
- Luo, J.Y., Cui, W.J., He, P., and Xia, Y.Y. (2010). Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765.
- Moreau, P., Guyomard, D., Gaubicher, J., and Boucher, F. (2010). Structure and stability of sodium intercalated phases in olivine FePO₄. Chem. Mater. 22, 4126–4128.
- Ong, S.P., Chevrier, V.L., Hautier, G., Jain, A., Moore, C., Kim, S., Ma, X., and Ceder, G. (2011). Voltage, stability and diffusion barrier differences between sodium-ion and lithiumion intercalation materials. Energy Environ. Sci. 4, 3680–3688.
- Dathar, G.K.P., Sheppard, D., Stevenson, K.J., and Henkelman, G. (2011). Calculations of Lilon diffusion in olivine phosphates. Chem. Mater. 23, 4032–4037.
- Xu, S., Jacobs, R.M., Nguyen, H.M., Hao, S., Mahanthappa, M., Wolverton, C., and Morgan, D. (2015). Lithium transport through lithium-ion battery cathode coatings. J. Mater. Chem. A 3, 17248–17272.
- Stromme Mattsson, M., Veszelei, M., Niklasson, G., Granqvist, C.-G., Stashan, A., and Lunell, S. (1997). Diffusion in electrochromic fluorinated Ti dioxide. In Electrochromic Materials and Their Applications III (The Electrochemical Society).
- 30. Li, Y., Chen, H., Lim, K., Deng, H.D., Lim, J., Fraggedakis, D., Attia, P.M., Lee, S.C., Jin, N., Moškon, J., et al. (2018). Fluidenhanced surface diffusion controls intraparticle phase transformations. Nat. Mater. 17, 915–922.
- García, G., Dieckhöfer, S., Schuhmann, W., and Ventosa, E. (2018). Exceeding 6500 cycles for LiFePO₄/Li metal batteries through

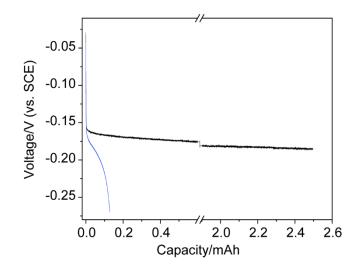
understanding pulsed charging protocols. J. Mater. Chem. A 6, 4746–4751.

- Li, J., Murphy, E., Winnick, J., and Kohl, P.A. (2001). The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries. J. Power Sources 102, 302–309.
- **33.** Chandrasekar, M.S., and Pushpavanam, M. (2008). Pulse and pulse reverse plating—conceptual, advantages and applications. Electrochim. Acta *53*, 3313–3322.
- 34. Aryanfar, A., Brooks, D., Merinov, B.V., Goddard, W.A., Colussi, A.J., and Hoffmann, M.R. (2014). Dynamics of lithium dendrite growth and inhibition: pulse charging experiments and Monte Carlo calculations. J. Phys. Chem. Lett. *5*, 1721– 1726.
- 35. Li, Y., El Gabaly, F., Ferguson, T.R., Smith, R.B., Bartelt, N.C., Sugar, J.D., Fenton, K.R., Cogswell, D.A., Kilcoyne, A.L.D., Tyliszczak, T., et al. (2014). Current-induced transition from particle-by-particle to concurrent intercalation in phase-

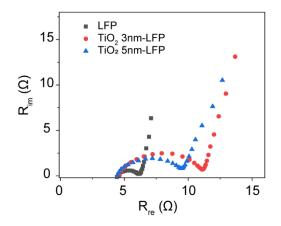
separating battery electrodes. Nat. Mater. 13, 1149–1156.

- Weichert, K., Sigle, W., van Aken, P.A., Jamnik, J., Zhu, C., Amin, R., Acartürk, T., Starke, U., and Maier, J. (2012). Phase boundary propagation in large LiFePO₄ single crystals on delithiation. J. Am. Chem. Soc. 134, 2988–2992.
- Bai, P., Cogswell, D.A., and Bazant, M.Z. (2011). Suppression of phase separation in LiFePO₄ nanoparticles During battery discharge. Nano Lett. 11, 4890–4896.

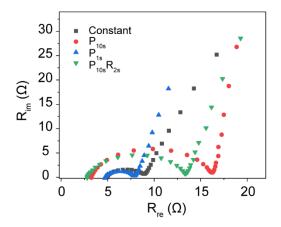
JOUL, Volume 4

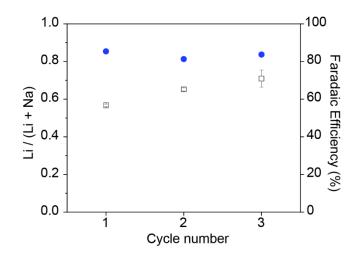

Supplemental Information

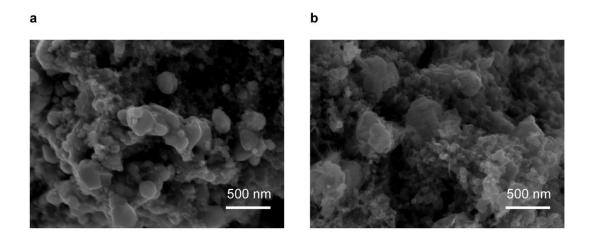
Lithium Extraction from Seawater

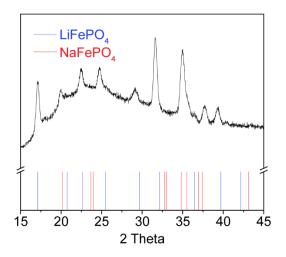

through Pulsed Electrochemical Intercalation

Chong Liu, Yanbin Li, Dingchang Lin, Po-Chun Hsu, Bofei Liu, Gangbin Yan, Tong Wu, Yi Cui, and Steven Chu


Supplementary Information


Supplementary Figure 1. The potential curve of two 3 nm of TiO_2 coated FePO₄ electrodes with similar mass loading running at constant reducing current (C/5 rate) in seawater exposed to the different atmosphere: O_2 (black) and N_2 (blue). When O_2 is present, the reduction reaction is dominated by the O_2 reduction reaction rather than Li intercalation.


Supplementary Figure 2. Electrochemical impedance spectroscopy of LiFePO₄ electrode with 0 nm, 3 nm and 5 nm of TiO_2 coating.


Supplementary Figure 3. Electrochemical impedance spectroscopy of the 3 nm of TiO_2 coated FePO₄ electrodes in the selectivity study using different electrochemical methods.

Supplementary Figure 4. Li selectivity and Faradaic efficiency results using simulated seawater of 1: 20,000 LiCl to NaCl (total concentration of 0.5 M) and pulse-rest-reverse pulse-rest electrochemical method.

Supplementary Figure 5. SEM images showing the 3 nm TiO_2 coated FePO₄ electrodes before (a) and after (b) the 10 cycles stability test using the pulse-rest-reverse pulse-rest method.

Supplementary Figure 6. XRD image showing the 3 nm TiO₂ coated FePO₄ electrodes after the 10 cycles stability test using the pulse-rest-reverse pulse-rest method. LiFePO₄ reference (JCPDS 040-1499). NaFePO₄ reference (JCPDS 029-1216).

Calculation of Figure 1c.

 $E_{Li}-E_{Na}$ potential was calculated from the Nernst equation shown below. E^{0}_{Li} is 0.36V vs standard hydrogen electrode (SHE) and E^{0}_{Na} is 0.19 V vs SHE.^{1–3}

$$E_{Li} = E_{Li}^{0} - 0.059 \log \frac{1}{[Li^{+}]}$$
$$E_{Na} = E_{Na}^{0} - 0.059 \log \frac{1}{[Na^{+}]}$$
$$E_{Li} - E_{Na} = E_{Li}^{0} - E_{Na}^{0} - 0.059 \log \frac{[Na^{+}]}{[Li^{+}]}$$

Electricity cost estimation.

Step 1 Lithium extraction: FePO₄ as the negative electrode and NaFePO₄ as the positive electrode Step 2 Li recovery:

Part 2.1 Li recovery: (Li/Na)FePO₄ as the positive electrode and C as the negative electrode Part 2.2 NaFePO₄ electrode regeneration: FePO₄ as the negative electrode and C as the negative electrode The cost of Li is

$$E_{1} = V_{1} \cdot Q_{1}$$

$$E_{21} = V_{21} \cdot Q_{21}, E_{22} = V_{22} \cdot Q_{22}, Q_{1} = Q_{21} = Q_{22}$$

$$Q_{1} = \frac{n_{Li} \cdot F}{FE\%}$$

$$C_{Li} = \frac{(E_{1} + E_{21} + E_{22}) \cdot P_{e}}{n_{Li}}$$

The electrochemical cell voltages (the difference between positive and negative electrode) for step 1, 2.1 and 2.2 are V₁ (0.04V), V₂₁ (1.2V), and V₂₂ (1.4V). The capacity in each step is Q₁, Q₂₁, and Q₂₂. Energy consumption for each step is E₁, E₂₁, and E₂₂. The molar of Li is n_{Li} . F is Faradaic constant, 96485 C/mol. FE% is the percentage of electric current used for Li extraction and we used the selectivity Li/(Li+Na). FE% = 50%. The cost for Li is C_{Li} and the unit price of electricity is P_e. P_e = \$0.10/kWh.

Based on the current setup, the electricity cost of Li is estimated to be 2.0/kg. With material and setup optimization, we expect the electricity cost to be significantly lower. Intrinsically, the V₂₁ + V₂₂ is the water-splitting voltage in our case. Since we used the C electrode, the overpotential is high and the total voltage is 2.6V. Considering a 10 mA/cm² current density, with better catalysts, a decrease in 1V is achievabled^{4.5}.

Additionally, in the real application, renewable energy will be used to power the electrochemical processes with a price of $0.04/kWh^6$. Therefore, the Li electricity cost is decreased to 0.5/kg. The market price of Li is 8-16/kg between 2017 and 2020 and is projected to increase in the coming decades. With electricity cost possibly being <5% of Li price, electrochemical Li extraction shows great potential as an alternative mining method.

References:

- 1. Moreau, P., Guyomard, D., Gaubicher, J., and Boucher, F. (2010). Structure and Stability of Sodium Intercalated Phases in Olivine FePO₄. Chem. Mater. 22, 4126–4128.
- 2. Zhu, Y., Xu, Y., Liu, Y., Luo, C., and Wang, C. (2013). Comparison of electrochemical performances of olivine NaFePO 4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5, 780–787.
- 3. Ong, S.P., Chevrier, V.L., Hautier, G., Jain, A., Moore, C., Kim, S., Ma, X., and Ceder, G. (2011). Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. *4*, 3680–3688.
- 4. Wang, H., Lee, H.-W., Deng, Y., Lu, Z., Hsu, P.-C., Liu, Y., Lin, D., and Cui, Y. (2015). Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nature Communications *6*, 1–8.
- 5. Fabbri, E., Nachtegaal, M., Binninger, T., Cheng, X., Kim, B.-J., Durst, J., Bozza, F., Graule, T., Schäublin, R., Wiles, L., et al. (2017). Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nature Materials *16*, 925–931.
- 6. Chu, S., Cui, Y., and Liu, N. (2017). The path towards sustainable energy. Nature Materials 16, 16–22.