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Abstract: In this study, a facile and rapid microwave-assisted synthesis method was used to syn-
thesize In2S3 nanosheets, ZnS nanosheets, and ZnIn2S4 nanosheets with sulfur vacancies. The
two-dimensional semiconductor photocatalysts of ZnIn2S4 nanosheets were characterized by XRD,
FESEM, BET, TEM, XPS, UV–vis diffuse reflectance, and PL spectroscopy. The ZnIn2S4 with sulfur
vacancies exhibited an evident energy bandgap value of 2.82 eV, as determined by UV–visible diffuse
reflectance spectroscopy, and its energy band diagram was obtained through the combination of
XPS and energy bandgap values. ZnIn2S4 nanosheets exhibited about 33.3 and 16.6 times higher
photocatalytic hydrogen production than In2S3 nanosheets and ZnS nanosheets, respectively, under
visible-light irradiation. Various factors, including materials, sacrificial reagents, and pH values,
were used to evaluate the influence of ZnIn2S4 nanosheets on photocatalytic hydrogen production.
In addition, the ZnIn2S4 nanosheets revealed the highest photocatalytic hydrogen production from
seawater, which was about 209.4 and 106.7 times higher than that of In2S3 nanosheets and ZnS
nanosheets, respectively. The presence of sulfur vacancies in ZnIn2S4 nanosheets offers promising
opportunities for developing highly efficient and stable photocatalysts for photocatalytic hydrogen
production from seawater under visible-light irradiation.

Keywords: ZnIn2S4 nanosheets; microwave-assisted synthesis; sacrificial reagents; photocatalytic
hydrogen production; seawater

1. Introduction

Microwave-assisted synthesis is a popular technique for the rapid and facile prepara-
tion of organic/inorganic nanostructured materials in various media [1,2]. In addition, it
offers control for internal and volumetric heating of materials, making it an environmen-
tally friendly method for fabricating new material structures, components, and devices [3].
Microwave-assisted synthesis has been widely used to synthesize nanostructured materials,
including metals, nanoporous materials, colloidal nanocrystals, polymer nanocomposites,
and inorganic or semiconducting nanomaterials [2,4–9]. Microwave-assisted synthesis of
nanostructures offers several advantages, including contactless heat transfer to the reactant
sample, short reaction time, high selectivity and yield, energy efficiency, uniform and
selective distribution of energy, control over size and temperature, improved safety and
reproducibility, and excellent control over experimental parameters, making it an inexpen-
sive, quick, clean, and versatile technique for the preparation of nanostructures [10–14]. In
addition, microwave-assisted synthesis has distinct characteristics that render it viable for
achieving extensive-scale industrial manufacturing [15,16].

Zinc indium sulfide (ZnIn2S4) is a highly efficient two-dimensional semiconduc-
tor photocatalyst from the AB2X4 family of ternary compounds, widely used in solar
energy conversion and environmental purification [17–20]. ZnIn2S4 typically forms two-
dimensional nanosheets due to its layered crystal structure, but these nanosheets quickly
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aggregate and assemble into three-dimensional nanostructures to minimize the surface
energy for most reported ZnIn2S4 [19,21]. ZnIn2S4 has two crystal structures: hexagonal
and cubic, with hexagonal ZnIn2S4 being the most researched in photocatalysis [22–24].
Recently, ZnIn2S4 has gained attention in photocatalytic hydrogen production, carbon
dioxide conversion, and pollutant removal, owing to its excellent light absorption and
strong redox capabilities [25–28]. However, the low separation degree of photogenerated
charge carriers and the low electron-transport efficiency of ZnIn2S4 limit its application
in photocatalysis [29]. In order to improve photocatalytic efficiency, introducing sulfur or
zinc vacancies has proven effective [30,31]. So far, most of the research on ZnIn2S4 has fo-
cused on combining different materials to improve its photocatalytic hydrogen production
performance, but there are few reports on preparing ZnIn2S4 with sulfur defects via the
microwave-assisted synthesis method [32].

Previous research has reported significant instances of photocatalytic hydrogen pro-
duction, predominantly employing deionized or pure water [33,34]. Nevertheless, the
preparation of deionized or pure water necessitates the purification of fresh water, which
results in energy wastage and contributes to the depletion of freshwater resources [35,36].
Furthermore, the increasing occurrence of abnormal climate changes, such as heavy rainfall
or drought, has led to a scarcity of freshwater resources [37,38]. Consequently, develop-
ing a photocatalyst capable of effectively decomposing seawater to generate hydrogen
would address this challenge and further enhance the situation [39]. Therefore, this study
aimed to produce hydrogen through the photocatalytic decomposition of seawater using
ZnIn2S4 nanosheets with sulfur defects, potentially reducing freshwater consumption and
addressing the scarcity of freshwater resources.

This study successfully synthesized In2S3 nanosheets, ZnS nanosheets, and ZnIn2S4
nanosheets with sulfur vacancies for photocatalytic hydrogen production by microwave-
assisted synthesis. The photocatalytic activities of ZnIn2S4 nanosheets with sulfur vacancies
were approximately 33.3 times higher than those of In2S3 nanosheets and about 16.6 times
higher than those of ZnS nanosheets under visible-light irradiation. Notably, utilizing
ZnIn2S4 nanosheets with sulfur vacancies as a photocatalyst demonstrated their exceptional
performance in efficiently splitting seawater under visible-light irradiation.

2. Materials and Methods
2.1. Chemicals

Anhydrous zinc chloride (ZnCl2, 98%), anhydrous indium(III) chloride (InCl3, 98%),
thioacetamide (TAA, C2H5NS, 98%), sodium sulfide nonahydrate (Na2S·9H2O, 98%),
sodium sulfite (Na2SO3, 98%), methanoic acid (CH2O2, 97%), folic acid dihydrate
(C19H19N7O6·2H2O, 97%), methanol (CH3OH, 99%), and sodium chloride (NaCl, 99%)
were purchased from Alfa Aesar (Haverhill, MA, USA) without further purification. Deion-
ized water (>18 MΩ·cm) was used throughout the experimental processes.

2.2. Synthesis of In2S3, ZnIn2S4, and ZnS Nanosheets

A facile microwave-assisted synthesis method can be used to synthesize In2S3 nanosheets,
ZnIn2S4 nanosheets, and ZnS nanosheets. For In2S3 nanosheets, 0.0045 g of InCl3 and
0.0075 g of TAA were dissolved in the 20 mL solvent (deionized water: ethanol = 3:1)
and put into a Teflon-lined digestion vessel. For ZnIn2S4 nanosheets, 0.0068 g of ZnCl2,
0.0045 g of InCl3, and 0.0075 gTAA were dissolved in the 20 mL solvent (deionized
water: ethanol = 3:1) and put into the Teflon-lined digestion vessel. For ZnS nanosheets,
0.0136 g of ZnCl2, and 0.0075 g TAA were dissolved in the 20 mL solvent (deionized
water: ethanol = 3:1) and put into the Teflon-lined digestion vessel. A safety shield was
placed around the vessel after sealing the reaction solution inside the vessel, using the
vessel cover as an overpressure release valve. The vessel was then heated at 140 ◦C for
1 h using a microwave synthesizer (ETHOS EASY, Milestone, Sorisole, Italy). Following
the cooling stage, the as-prepared samples were thoroughly cleaned with deionized water,
purified through centrifugation, and dried at 70 ◦C for 2 h.
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2.3. Characterization

The crystal structure of the as-prepared photocatalysts was investigated by X-ray
diffractometry (XRD) using a Bruker D2 phaser system (Billerica, MA, USA) in the 2θ
range of 25–65◦ with Cu Kα (λ = 1.5418 Å). In addition, field-emission scanning electron
microscopy (FESEM) was used to investigate the surface morphology of the as-prepared
photocatalysts using a Hitachi S-4800 microscope (Tokyo, Japan) operating at a 15 kV
accelerating voltage. The specific surface areas of the as-prepared photocatalysts were
measured using the nitrogen adsorption technique (ASAP 2020, Micromeritics, GA, USA).
Field-emission transmission electron microscopy (FETEM) at an accelerating voltage of
200 kV was employed to characterize the microstructures and composition of the ZnIn2S4
nanosheets using a JEOL 2100F microscope (Tokyo, Japan). The surface chemical com-
position and sulfur vacancies of the ZnIn2S4 nanosheets were detected by using X-ray
photoelectron spectroscopy (XPS, ULVAC-PHI PHI 5000 Versaprobe II system, Chigasaki,
Japan) with an Al K source. The as-prepared photocatalysts’ UV–vis diffuse reflectance spec-
tra were recorded using a UV–vis spectrophotometer (PerkinElmer Lambda 650 S, Waltham,
MA, USA) and analyzed using a Protrustech MRI532S instrument (Tainan, Taiwan). A
three-electrode system was utilized with the assistance of the Zennium electrochemical
workstation (Zahhner, Kronach, Germany) for measuring electrochemical impedance spec-
troscopy (EIS).

2.4. Photocatalytic Hydrogen Production Experiment

In order to investigate photocatalytic hydrogen production, an experiment was con-
ducted with the PCX50B Discover photocatalytic reaction system (Perfect Light Technology,
Beijing, China). For the experiment, 25 mg of the as-prepared photocatalysts was mixed
with 50 mL of different water bases, including deionized water, reverse-osmosis water, tap
water, and seawater. Different sacrificial agents, such as sodium sulfide, sodium sulfate,
methanol, and methanoic acid, were added to the water bases at 0.1 M concentrations. The
mixtures were then placed in 60 mL quartz tubes, and Ar gas was introduced for 30 min to
eliminate air. The tubes were sealed with rubber stoppers and irradiated for 3 h using a 5 W
blue LED (λ = 420 nm) as a visible-light source. The hydrogen produced was quantified
using a gas chromatograph equipped with a thermal conductivity detector (TCD).

3. Results and Discussion

The crystalline phases of the prepared photocatalysts were analyzed using X-ray
diffraction (XRD). Figure 1 shows the XRD patterns of In2S3 nanosheets, ZnIn2S4 nanosheets,
and ZnS nanosheets grown via rapid microwave-assisted synthesis at 140 ◦C for 1 h. For
In2S3 nanosheets (Figure 1a), the eight peaks at 27.7◦, 28.9◦, 33.6◦, 43.9◦, 48.0◦, 51.9◦, 56.3◦,
and 59.8◦ correspond to the (311), (222), (400), (511), (440), (610), (533), and (444) planes
of typical cubic In2S3 (JCPDS card No. 32-0456), respectively. For ZnIn2S4 nanosheets
(Figure 1b), the five peaks at 27.7◦, 28.8◦, 47.3◦, 52.2◦, and 56.4◦correspond to the (102),
(103), (110), (1012), and (203) planes of typical hexagonal ZnIn2S4 (JCPDS card No. 72-0773),
respectively. For ZnS nanosheets (Figure 1c), the four peaks at 27.7◦, 28.8◦, 47.3◦, and
56.4◦correspond to the (100), (002), (110), and (112) planes of typical hexagonal ZnS (JCPDS
card No. 80-0007), respectively. The absence of diffraction peaks corresponding to impuri-
ties further confirms the phase purity of the prepared photocatalysts.

The surface morphologies of the synthesized In2S3 nanosheets, ZnIn2S4 nanosheets,
and ZnS nanosheets were characterized using FESEM, as depicted in Figure 2. In Figure 2a,
small and interconnected In2S3 nanosheets can be observed, and the thickness of the
nanosheets is about 15–40 nm. ZnIn2S4 nanosheets are larger and interconnected, with
a thickness of about 15–60 nm, as shown in Figure 2b. Figure 2c reveals that the ZnS
nanosheets are stacked on one another and form a spherical structure. We utilized a
BET (Brunauer–Emmett–Teller) analyzer to examine the specific surface areas of In2S3
nanosheets, ZnIn2S4 nanosheets, and ZnS nanosheets. The nitrogen adsorption–desorption
isotherms revealed that the specific surface areas of these photocatalysts were as follows:
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99.8 (In2S3 nanosheets), 77.3 (ZnIn2S4 nanosheets), and 35.8 (ZnS nanosheets) m2g−1. The
specific surface areas of the In2S3 nanosheets and ZnIn2S4 nanosheets were significantly larger
than that of the ZnS nanosheets, which is consistent with the FESEM characterization results.
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Figure 3a shows the FETEM image of ZnIn2S4 nanosheets, which is consistent with
the FESEM image of the nanosheet structure made of lamellar stacks. Additionally, the
polycrystalline nature of the ZnIn2S4 nanosheets is substantiated by the presence of charac-
teristic polycrystalline diffraction rings observed in the selected-area electron diffraction
(SAED) patterns, as shown in Figure 3b. The prominent diffraction ring patterns corre-
spond to the crystal planes (102), (103), (110), (1012), and (203), which are indicative of
the typical hexagonal structure of ZnIn2S4 (JCPDS card No. 72-0773). These findings are
consistent with the results obtained from the XRD analysis, confirming the polycrystalline
properties of the ZnIn2S4 nanosheets. Figure 3c reveals that the HRTEM image of the lattice
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fringes of 0.331 nm and 0.322 nm are assigned to the (101) and (102) planes of hexagonal
ZnIn2S4, respectively. Moreover, the mapping images obtained from the energy-dispersive
spectrometry (EDS) analysis (Figure 3d) reveal a uniform and interconnected distribution
of elemental Zn, In, and S. These results provide conclusive evidence of the successful
synthesis of ZnIn2S4 nanosheets.
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X-ray photoelectron spectroscopy (XPS) was utilized to determine the elemental
composition and chemical configurations of the ZnIn2S4 nanosheets. Figure 4a displays
the complete XPS spectrum, which confirms the presence of elemental Zn, In, S, C, and
O in the ZnIn2S4 nanosheets. The appearance of C 1s and O 1s signals can be explained
by the presence of pump oil in the XPS equipment’s vacuum system and the adsorption
of oxygen atoms, respectively. Figure 4b shows that the high-resolution XPS spectrum of
Zn 2p reveals two peaks at 1021.2 eV and 1044.2 eV, which are assigned to Zn 2p3/2 and Zn
2p1/2, respectively, indicating the presence of Zn2+ in ZnIn2S4. Figure 4c shows that the
high-resolution XPS spectrum of In 3d reveals two peaks at 444.2 eV and 451.8 eV, which are
assigned to In 3d5/2 and In 3d3/2, respectively, indicating the presence of In3+ in ZnIn2S4.
Compared with pure ZnIn2S4 (S 2p1/2 = 161.4 eV and S 2p3/2 = 162.7 eV), the XPS peaks of
S 2p1/2 and 2p3/2 in ZnIn2S4 nanosheets with sulfur defects shift to lower binding energies
of 160.9 and 161.9 eV, respectively [25,31,40]. This peak shift can primarily be attributed to
the presence of sulfur vacancies, indicating the influence of these vacancies on the electronic
structure of the materials [41]. This result demonstrates that rapid microwave-assisted
synthesis can facilitate the formation of ZnIn2S4 nanosheets with sulfur defects during the
same reaction process.

In order to assess the photocatalytic characteristics of the catalyst, a photocatalytic
hydrogen evolution experiment was conducted in deionized water. The hydrogen evo-
lution rate (HER) activities of the as-prepared photocatalysts (In2S3 nanosheets, ZnIn2S4
nanosheets, and ZnS nanosheets) and commercial photocatalysts (ZnO nanopowder and
TiO2 nanopowder) were evaluated under visible-light irradiation (5 W blue LED, λ = 420 nm)
using 0.1 M Na2S as a sacrificial reagent in deionized water with pH = 12, as shown in
Figure 5a. The ZnIn2S4 nanosheets exhibited an HER value of 24.95 µmolh−1g−1, which
is about 33.3 and 16.6 times higher than 0.75 (In2S3 nanosheets) and 1.5 (ZnS nanosheets)
µmolh−1g−1, respectively. On the other hand, the pure ZnIn2S4 nanosheets synthesized
by a hydrothermal method revealed significantly lower HER values of 0.065 µmolh−1g−1

under the same photocatalytic reaction conditions [25]. These outcomes indicate that uti-
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lizing the rapid microwave-assisted synthesis approach facilitates the growth of ZnIn2S4
nanosheets with sulfur vacancies, leading to a notable improvement in their photocatalytic
hydrogen evolution.
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Figure 5. (a) The average HER of different photocatalysts. The average HER of ZnIn2S4 nanosheets
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and (d) pH values.

In photocatalytic hydrogen production, sacrificial reagents are often employed to
enhance the efficiency of oxidation reactions in aqueous environments, compensating
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for the inefficiency of pure water oxidation [42]. Figure 5b illustrates the HER values of
ZnIn2S4 nanosheets under visible-light irradiation using four different sacrificial reagents:
sodium sulfide (Na2S), sodium sulfite (Na2SO3), folic acid (FA), and methanol (CH3OH).
The HER values of the ZnIn2S4 nanosheets were 24.95 (Na2S), 21.6 (Na2SO3), 0 (FA), and
0 µmolh−1g−1 (CH3OH). In photocatalytic hydrogen generation, the sacrificial agent serves
the dual role of providing electrons for proton reduction and scavenging holes to impede
the recombination of electron–hole pairs, thereby improving the process’s efficiency [43,44].
Consequently, using sodium sulfide or sodium sulfate as a sacrificial reagent can enhance
the reduction/oxidation reaction, reduce the photocorrosion of metal sulfide materials, and
enhance their photocatalytic hydrogen production capability [42,45].

In general, concentrated sacrificial reagents are preferable, as they promote better
diffusion of the reacting species toward the surface of the photocatalysts [46,47]. However, it
is essential to note that the highest hydrogen evolution rate cannot be achieved with diluted
or highly concentrated sacrificial reagents [48]. The impact of Na2S concentrations on the
photocatalytic efficiency of ZnIn2S4 nanosheets is shown in Figure 5c. The average HER
values of the ZnIn2S4 nanosheets were recorded as follows: 0 (without Na2S), 8.1 (0.01 M
Na2S), 21.4 (0.025 M Na2S), 29.55 (0.05 M Na2S), and 24.95 µmolh−1g−1 (0.1 M Na2S). The
ZnIn2S4 nanosheets with appropriate Na2S concentrations can exhibit the highest HER
under visible-light irradiation.

The optimal pH level for photocatalytic hydrogen production is primarily determined
by the characteristics of the sacrificial agent and its affinity for adsorption onto the surface of
the photocatalyst [49]. The impact of pH values on the photocatalytic efficiency of ZnIn2S4
nanosheets is illustrated in Figure 5d. The average HER values of ZnIn2S4 nanosheets were
recorded as follows: 134.5 (pH = 1), 143.9 (pH = 3), 54.4 (pH = 6), 31.25 (pH = 9), 29.55
(pH = 12), and 16.3 µmolh−1g−1 (pH = 12.9, without adjustment). An increase in the pH
value from 1 to 3 significantly enhanced the photocatalytic hydrogen production efficiency.
This enhancement can be attributed to the increased dissociation of HS− and S2− species
with the increasing pH value [47]. However, low pH values may result in photocorrosion
of the catalyst and a reduction in hydrogen production efficiency [35]. Hence, the ZnIn2S4
nanosheets exhibited the highest photocatalytic hydrogen production efficiency at pH = 3.

The UV–vis diffuse reflectance spectra of In2S3, ZnIn2S4, and ZnS nanosheets within
the range of 300–800 nm are illustrated in Figure 6a. For In2S3 nanosheets, a pronounced
absorption can be observed below 600 nm, indicating strong intrinsic interband transition
absorption specific to In2S3. For ZnIn2S4 nanosheets, a notable absorption can be observed
below 500 nm, corresponding to the intrinsic interband transition absorption of In2S3.
Finally, for ZnS nanosheets, a significant absorption can be observed below 400 nm in
the UV region, attributed to the intrinsic interband transition absorption of ZnS. These
observations indicate that both In2S3 nanosheets and ZnIn2S4 nanosheets exhibit substantial
absorption of visible light. The direct optical bandgap, Eg, of the materials was determined
by employing the equation (αhν)2 = A(hν − Eg), where hν represents the photon energy in
electron volts (eV), α is the absorption coefficient, and A is a material constant [50]. This
analysis was conducted based on the data presented in Figure 6b. Consistent with prior
findings, the results indicate that the In2S3, ZnIn2S4, and ZnS bandgaps were measured to
be 2.05 eV, 2.82 eV, and 3.32 eV, respectively [25,51,52].

Photoluminescence (PL) spectra are a valuable tool for examining photogenerated
charge carriers’ trapping, migration, and transfer efficiency in semiconductors [53,54]. By
analyzing the PL spectra, it is possible to gain insights into the recombination and annihi-
lation processes of photogenerated electron–hole pairs in semiconductors [55]. Figure 7a
displays the PL spectra of In2S3, ZnIn2S4, and ZnS nanosheets. The ZnS nanosheets demon-
strate more pronounced emission characteristics than the In2S3 and ZnIn2S4 nanosheets,
suggesting a higher degree of recombination of photogenerated charge carriers within the
photocatalyst. Electrochemical impedance spectroscopy (EIS) is presented in Figure 7b.
The arc radii of the EIS Nyquist curves of the samples were in the following order:
ZnS > In2S3 > ZnIn2S4. ZnIn2S4

′s arc radius was smaller than those of In2S3 and ZnS.
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The smaller radius observed in the EIS test indicates lower charge transfer resistance
and higher efficiency in separating charge carriers, suggesting a faster electron transfer
process [56–58]. Consequently, the EIS results confirm that ZnIn2S4 nanosheets with sulfur
vacancies facilitate the migration of photogenerated charge carriers, resulting in enhanced
photocatalytic activity for hydrogen evolution.
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The band structure greatly influences the generation and migration of charge carriers.
Therefore, the valence band (VB) XPS was conducted on the obtained ZnIn2S4 nanosheets
to investigate the valence band location. Figure 8a illustrates the typical valence band
density of states (DOS) characteristics of ZnIn2S4 nanosheets with the valence band po-
sition at 0.76 eV. Based on the equation ECB = EVB − Eg and the measured bandgap of
ZnIn2S4 (Figure 6b), the conduction band (CB) potential is estimated to occur at −2.06 eV.
After carefully examining the findings above, we developed a hypothetical reaction mech-
anism for photocatalytic hydrogen production using ZnIn2S4 nanosheets. The proposed
mechanism is visually depicted in Figure 8b, providing a realistic representation of the
process. The presence of sulfur vacancies in ZnIn2S4 leads to the formation of defect levels
within the conduction band (CB). In addition, these sulfur vacancies act as electron traps,
effectively capturing photogenerated electrons and preventing their direct recombination
with photoinduced holes. The trapped electrons in the sulfur vacancies of ZnIn2S4 can
subsequently participate in the reduction of 2H+ to produce H2. At the same time, the
photogenerated holes in ZnIn2S4 can oxidize sulfide ions (S2−, sodium sulfide dissociated).

Given that approximately 93% of the Earth’s water exists in the form of seawater,
utilizing seawater as a source for hydrogen production through water splitting offers a
practical solution to conserve freshwater resources for various purposes, such as agriculture,
industry, and human consumption [39,59]. Furthermore, the hydrogen produced through
the photocatalytic decomposition of seawater can be utilized to generate pure water through
a fuel cell generator, adding to its potential benefits. The exceptional versatility of ZnIn2S4
nanosheets is demonstrated by their photocatalytic capability to generate hydrogen using
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various water sources. As depicted in Figure 9a, the dispersion of ZnIn2S4 nanosheets in
50 mL of different water sources, including deionized water (DI), reverse-osmosis water
(RO), tap water (TW), and seawater (SW), was observed under visible-light irradiation
with a pH value of 3 and the presence of 0.1 M Na2S as a scavenger. The average HER
values of ZnIn2S4 nanosheets were measured as 143.9 (DI), 158.9 (RO), 207.7 (TW), and
992.4 µmolh−1g−1 (SW). With the increasing complexity of the water matrix, there is a
gradual enhancement in the efficiency of photocatalytic hydrogen production. In order to
investigate the influence of sodium chloride (NaCl) on the photocatalytic effect, this study
included the addition of 35 psu NaCl (35 g/L) to deionized water to assess its impact on
hydrogen production, as shown in Figure 9b. This result indicates that adding sodium
chloride to deionized water did not significantly improve the efficiency of photocatalytic
hydrogen production. Therefore, it can be inferred that sodium chloride might not be
the primary factor for enhancing photocatalytic hydrogen production. The average HER
values of photocatalysts, such as In2S3 nanosheets, ZnIn2S4 nanosheets, ZnS nanosheets,
ZnO nanopowder, and TiO2 nanopowder, were assessed under visible-light irradiation
using 0.1 M Na2S as a sacrificial reagent in seawater with a pH value of 3, as depicted in
Figure 9c. The average HER values of the photocatalysts were measured as 4.74 (In2S3
nanosheets), 992.4 (ZnIn2S4 nanosheets), 9.3 (ZnS nanosheets), 3.7 (ZnO nanopowder),
and 0 µmolh−1g−1 (TiO2 nanopowder). The ZnIn2S4 nanosheets exhibited the highest
photocatalytic hydrogen production from seawater, which was about 209.4 and 106.7 times
higher than that of In2S3 nanosheets and ZnS nanosheets, respectively. These results
demonstrate that the microwave-assisted synthesis method promotes the formation of
ZnIn2S4 nanosheets with sulfur vacancies, significantly enhancing their photocatalytic
activity for hydrogen production from seawater.

Nanomaterials 2023, 13, 1957 9 of 14 
 

 

of ZnIn2S4 (Figure 6b), the conduction band (CB) potential is estimated to occur at −2.06 
eV. After carefully examining the findings above, we developed a hypothetical reaction 
mechanism for photocatalytic hydrogen production using ZnIn2S4 nanosheets. The pro-
posed mechanism is visually depicted in Figure 8b, providing a realistic representation 
of the process. The presence of sulfur vacancies in ZnIn2S4 leads to the formation of de-
fect levels within the conduction band (CB). In addition, these sulfur vacancies act as 
electron traps, effectively capturing photogenerated electrons and preventing their direct 
recombination with photoinduced holes. The trapped electrons in the sulfur vacancies of 
ZnIn2S4 can subsequently participate in the reduction of 2H+ to produce H2. At the same 
time, the photogenerated holes in ZnIn2S4 can oxidize sulfide ions (S2−, sodium sulfide 
dissociated). 

 
Figure 8. (a) VB XPS spectrum of the ZnIn2S4 nanosheets. (b) The schematic diagram depicts the 
charge separation process and photocatalytic reaction in the ZnIn2S4 nanosheets under visible-light 
irradiation. 

Given that approximately 93% of the Earth’s water exists in the form of seawater, 
utilizing seawater as a source for hydrogen production through water splitting offers a 
practical solution to conserve freshwater resources for various purposes, such as agri-
culture, industry, and human consumption [39,59]. Furthermore, the hydrogen pro-
duced through the photocatalytic decomposition of seawater can be utilized to generate 
pure water through a fuel cell generator, adding to its potential benefits. The exceptional 
versatility of ZnIn2S4 nanosheets is demonstrated by their photocatalytic capability to 
generate hydrogen using various water sources. As depicted in Figure 9a, the dispersion 
of ZnIn2S4 nanosheets in 50 mL of different water sources, including deionized water 
(DI), reverse-osmosis water (RO), tap water (TW), and seawater (SW), was observed un-
der visible-light irradiation with a pH value of 3 and the presence of 0.1 M Na2S as a 
scavenger. The average HER values of ZnIn2S4 nanosheets were measured as 143.9 (DI), 
158.9 (RO), 207.7 (TW), and 992.4 µmolh−1g−1 (SW). With the increasing complexity of the 
water matrix, there is a gradual enhancement in the efficiency of photocatalytic hydro-
gen production. In order to investigate the influence of sodium chloride (NaCl) on the 
photocatalytic effect, this study included the addition of 35 psu NaCl (35 g/L) to deion-
ized water to assess its impact on hydrogen production, as shown in Figure 9b. This re-
sult indicates that adding sodium chloride to deionized water did not significantly im-
prove the efficiency of photocatalytic hydrogen production. Therefore, it can be inferred 
that sodium chloride might not be the primary factor for enhancing photocatalytic hy-
drogen production. The average HER values of photocatalysts, such as In2S3 nanosheets, 
ZnIn2S4 nanosheets, ZnS nanosheets, ZnO nanopowder, and TiO2 nanopowder, were as-
sessed under visible-light irradiation using 0.1 M Na2S as a sacrificial reagent in seawater 
with a pH value of 3, as depicted in Figure 9c. The average HER values of the photo-
catalysts were measured as 4.74 (In2S3 nanosheets), 992.4 (ZnIn2S4 nanosheets), 9.3 (ZnS 
nanosheets), 3.7 (ZnO nanopowder), and 0 µmolh−1g−1 (TiO2 nanopowder). The ZnIn2S4 

Figure 8. (a) VB XPS spectrum of the ZnIn2S4 nanosheets. (b) The schematic diagram depicts the
charge separation process and photocatalytic reaction in the ZnIn2S4 nanosheets under visible-light
irradiation.

The reusability of ZnIn2S4 nanosheets was investigated through an eight-cycle pho-
tocatalytic process, wherein the seawater containing 0.1 M Na2S at pH = 3 was renewed
and subjected to visible-light irradiation, as shown in Figure 10. As a result, the average
HER values of ZnIn2S4 nanosheets were recorded as follows: 992.4, 1277.5, 1445.6, 1694.8,
1782.3, 1688.2, 1676.9, and 1518.0 µmolh−1g−1. The photocatalytic hydrogen production
efficiency from seawater exhibited an initial increase followed by a gradual decline as the
number of cycles increased. The HER of ZnIn2S4 nanosheets showed a notable increase
of 1.8 times after the fifth cycle compared to the first cycle. A noticeable distinction was
observed between the XRD spectrum before the cycle (Figure 1b) and after the eighth cycle
(Figure 11a). Notably, three additional crystal phases of ZnS (JCPDS card No. 72-0163),
Zn2SO4 (JCPDS card No. 86-0802), and NaZn(OH)3 (JCPDS card No. 87-0762) were identi-
fied following the cycling process. This phenomenon can be attributed to the interaction
between ZnIn2S4 nanosheets and seawater, forming ZnIn2S4/ZnS nanocomposites. ZnS
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possesses sulfur vacancies at the defect level, which can facilitate the migration of photo-
generated charge carriers to enhance photocatalytic performance [60,61]. The morphology
of ZnIn2S4 nanosheets exhibited similarity before the cycle (Figure 2b) and after the eighth
cycle (Figure 11b), and noticeable changes were obtained in the roughness of the surface
following the cycling process. However, a slight decrease in HER was observed in the sixth
cycle, possibly due to the loss of photocatalysts during multiple centrifugations. Further-
more, these results confirm the outstanding stability and reusability of ZnIn2S4 nanosheets,
highlighting their potential for wide-ranging and diverse applications in various fields.
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4. Conclusions

This study employed a convenient and rapid microwave-assisted synthesis method to
produce In2S3 nanosheets, ZnS nanosheets, and ZnIn2S4 nanosheets with sulfur vacancies.
The ZnIn2S4 nanosheets demonstrated significantly enhanced photocatalytic hydrogen
production performance compared to In2S3 nanosheets and ZnS nanosheets, achieving
approximately 33.3 times and 16.6 times higher activity under visible-light irradiation,
respectively. We further investigated the impacts of various factors, such as materials,
sacrificial reagents, and pH values, on the photocatalytic hydrogen production of ZnIn2S4
nanosheets. The ZnIn2S4 nanosheets exhibited the highest photocatalytic hydrogen pro-
duction efficiency from seawater, surpassing In2S3 nanosheets and ZnS nanosheets by
approximately 209.4 times and 106.7 times, respectively. The presence of sulfur vacancies
in ZnIn2S4 nanosheets holds great promise for developing highly efficient and stable pho-
tocatalysts for hydrogen production from seawater under visible-light irradiation. This
research can potentially conserve precious freshwater resources and use light energy to
split seawater into hydrogen energy.
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