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Abstract

Global warming has been affecting human health, including direct mortality

and morbidity from extreme heat, storms, drought, and indirect infectious dis-

eases. It is not only “global” but extremely “personal”—it is a matter of life and

death for many of us. In this perspective, we propose the use of wearable tech-

nologies for localized personal thermoregulation as an innovative method to

reduce the impact on health and enable wider adaptability to extreme thermal

environments. The state-of-the-art thermoregulation methods and wearable

sensing technologies are summarized. In addition, the feasibility of thermoregu-

lation technology in preventive medicine for promoting health under climate

change is comprehensively discussed. Further, we provide an outlook on health-

oriented closed loop that can be achieved based on parallel thermoregulation

and multiple data inputs from the physiological, environmental, and

psychological cues, which could promote individuals and the public to better

adapt to global warming.
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1 | INTRODUCTION

Average global temperatures have increased by �0.85�C
since the last century1 (Figure 1A). It is likely to reach
1.5�C around mid-century, according to a report from
Intergovernmental Panel on Climate Change (IPCC).2

While these numbers may seem abstract and distant from
our everyday life, global warming, and climate change are
impacting our lives in an immediate and profound way.3

Evidence is mounting that such variations in the large-
scale climate system have been affecting human health,
including direct mortality and morbidity from extreme
heat, storms, drought, and indirect infectious diseases.4–7

Heat gain in the human body is attributed to the integra-
tion of external heat from the environment and internal
heat from metabolic processes.8 Rapid increases in heat
gain resulting from exposure to hotter-than-average envi-
ronments can limit the thermal homeostasis of the human
body and lead to various direct illnesses such as cardiovas-
cular mortality, respiratory illnesses, neurological disorders,
and injuries.5,9,10 (Figure 1B). In other words, global warm-
ing is not only “global” but extremely “personal”—it is a
matter of life and death for many of us.

Direct heat-related diseases are likely to happen
during heatwaves or extremely hot or humid weather
that can last for several days.11 The World Health
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Organization estimates that the heatwave due to anthro-
pogenic climate change has claimed over 166 000 lives
since 1998.12 As the Earth's climate warms, heat waves
occur more frequently and intensely in major cities
across the United States. Their average frequency per
year has increased steadily from two during the 1960s to
six during the 2010s and 2020s11 (Figure 1C). In recent
years, the average heat waves in major U.S. urban areas
are about 4 days long, which is about 1 day longer than
the average heat wave in the 1960s. The more frequent
and fierce heatwave is expected to result in more heat-
related diseases and deaths.11

The effect of climate change on human health is not
limited to just shifting the average temperature up, as
shown in Line (a) in Figure 1D. Other factors, such as the
increasing trend of urbanization, the aging of popula-
tions, and extreme weather events can greatly increase
the population's exposure rate to extreme heat, as

illustrated in Line (b) in Figure 1D.13 For example, with
increasing urbanization in all countries (projected to
increase from 57% in 2022 to 85% by 2100),14 more people
will be exposed to the heat island effect in urban areas.15,16

Heat island effect is formed due to urban structures, such
as buildings, roads, and other infrastructures, which
absorb more solar radiation compared to natural land-
scapes like forests and water bodies. The heat island effect
in urban areas can exacerbate the impact of naturally
occurring heat waves.17 Another factor is the aging popula-
tion in high-income countries, which is predicted to
undergo substantial growth over the coming decades (the
proportion aged over 65 years increasing from 10% in 2022
to 16% by 2050).18 Since aged people are more susceptible
to heat-related illnesses, it is predictable that a greater pro-
portion of people in all countries will be at risk from heat
extremes in future. Taking steps to adapt to climate change
and stay healthy is acute and significant for human beings.

FIGURE 1 Global warming and its effect on human health. (A) Global temperature variations since 1880, show an obvious increasing

trend. The anomalies are with respect to the average temperature from 1901 to 2000.1 (B) Examples of heat-related diseases.9 (C) Increasing

average number of heat waves in the United States by decades, 1961–2021.11 (D) The impact of increases in (i) average temperature, and

(ii) average temperature and variability, on the frequency of extreme weathers. Arrows indicate the area-under-the-curve beyond the

threshold temperatures for very cold and very hot conditions. Reproduced with permission: Copyright 2006, Elsevier B.V.13
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2 | WEARABLE TECHNOLOGY
FOR PERSONAL COOLING

One innovative method to reduce the impact on health
and enable people's wider adaptability to extreme ther-
mal environments is using wearable technologies for
localized personal thermoregulation. Personal thermoreg-
ulation can be divided into four levels, static, passively
adaptive, actively adaptive, and active (Figure 2). Static
thermoregulation has a single working mode. It is the
most straightforward, facile in manufacturing, sustain-
able, and cost-effective,19,20 but its lack of responsive-
ness to the changing surroundings limits its efficiency
and restricts its use to certain scenarios. Passive-
dynamic thermoregulation that can adapt to external
environment have dual- or multi-working modes.21–23 It
improves the overall thermoregulation effect and
expands the application scenarios without additional
energy consumption. However, it cannot be controlled
on demand, which restricts its capabilities in personal-
ized thermoregulation. Instead, active-dynamic that
integrates wearable sensors and dynamic tunable ther-
moregulation devices is the most promising method to
enable personalized health-oriented thermoregula-
tion.24,25 It allows individuals to maintain customized
thermal comfort under varying metabolic and environ-
mental conditions in an autonomous manner. Active
cooling thermoregulation systems that rely on external

work to enhance heat transfer, such as thermoelectric
device (TED),26–28 liquid cooling circulation,29 and air
ventilation,30,31 can successfully deliver a higher cooling
power. However, these systems consume a high amount
of energy. They can work as first-aid equipment for
extreme weather conditions or health-threatening emer-
gencies with strong demand for cooling.

One can imagine that wearing specially engineered
textiles that can better cool the human body down may
reduce the possibility of getting heat-related diseases or
death. Another essential point linking cooling textiles
with global warming is that cooler textiles will decrease
human reliance on air conditioning, which is consider-
able in global warming because it not only accounts for
10% of U.S. electricity consumption, but that refriger-
ants are also a source of high global warming potential
gasses.33 Hence, in the last decade, cooling textiles have
attracted great attention in both science and industry
communities. There are four different pathways for
heat transfer between the human body and the environ-
ment, that is, conduction, convection, radiation, and
evaporation8 (Figure 3), which work together to main-
tain the core body temperature stabilized at 35–
37.5�C.8,34 Under extremely hot and humid weather,
body cooling system failing to maintain the core tem-
perature within this range will result in heat-related
diseases.34,35 Cooler textiles that could facilitate the
four pathways either in better blocking heat from the

FIGURE 2 Comparison of four levels of personalized thermoregulation, including static, passively adaptive, actively adaptive, and

active. Static thermoregulation has a single working mode, while passively adaptive thermoregulation has dual- or multi-working modes.

Static figure: Reproduced under terms of the CC-BY license.32 Copyright 2023, Oxford Academic. Passively adaptive figure: Reproduced

under terms of the CC-BY-NC 4.0 license.21 Copyright 2021, AAAS. Actively adaptive, which integrates wearable sensors and dynamic

thermoregulation devices into a feedback loop, is considered the most promising method for personalized health-oriented thermoregulation,

as it allows individuals to maintain their thermal comfort in different metabolic and environmental conditions autonomously.24 Active

thermoregulation that normally delivers a higher cooling power can work as first-aid equipment for extreme weather conditions or health-

threatening emergencies with a strong demand for cooling. Reproduced with permission.27 Copyright 2020, Elsevier B.V.
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atmosphere or dissipating metabolic heat will reduce
the impact of extreme weather on human beings.

Among these four pathways, radiative heat exchange
is extremely important under static conditions,33,36,37

making radiative cooling textiles important in personal-
ized thermoregulation. The fundamental principle for
radiative cooling textile is that a material surface sponta-
neously cools down by radiating heat to the cold outer
space through the atmosphere's transparent window38–41

while suppressing all the solar heat gain.42–44 From the
photonic engineering point of view, the solar bands
should be reflected as much as possible,45 while enhanc-
ing human body radiative heat loss can be achieved by
enabling the textile's mid-infrared (mid-IR) property in
two ways: high transmittance or high emissivity. The

former allows the broadband human body radiation to
directly transmit and can be achieved by polyethylene
(PE) because of its simple chemical bonds and very few
resonance peaks in the mid-IR region.46 In 2016, Hsu
et al.33 demonstrated multifunctional nanoporous PE
radiative cooling fabric, featuring its visible-light opacity,
breathability, and softness. After that, PE was further
developed into woven and knitted fabrics,47 colored cool-
ing textiles,48 and outdoor cooling textiles.49 On the other
hand, high-emissivity textiles equilibrate with the under-
lying human skin by both thermal radiation and conduc-
tion in the air gap and re-emit to the atmosphere at the
outer side.38,50 Their IR-opaque property inevitably
results in radiation shielding effect,51 but it is easier to
perform spectrum engineering for solar reflectivity and

FIGURE 3 Closed loop enabled by parallel thermoregulation and real-time sensing for wearable personalized healthcare. Autonomous

thermoregulation device maintains the human body in a safe temperature zone by regulating the heat dissipation pathways, that is,

radiation, evaporation, conduction, and convection, while wearable sensors detect human pyretic state (temperature sensor), metabolites,

and biomarkers (sweat sensor), bioelectric signals (ECG, EEG, and EMG signal detector), and respiratory states. The detected signals are

transferred to the cloud dataset for big data analysis, promoting individual and public healthcare. Person: Reproduced with permission.68

Copyright 2020, Elsevier B.V. Radiation: Reproduced with permission.33 Copyright 2016, AAAS. Sweat evaporation: Reproduced with

permission.60 Copyright 2016, American Chemical Society. Conduction: Reproduced under terms of the CC-BY 4.0 license.54 Copyright 2021,

Springer Nature. Temperature sensor: Reproduced with permission.69 Copyright 2019, Wiley-VCH. Sweat sensor: Reproduced with

permission.70 Copyright 2019, Springer Nature. EMG signal detector: Reproduced under terms of the CC-BY 4.0 license.71 Copyright 2016,

Springer Nature. Respiratory sensor: Reproduced with permission.72 Copyright 2019, Wiley-VCH. Cloud dataset: Reproduced under terms of

the CC-BY 4.0 license.73 Copyright 2022, Springer Nature.
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emissivity within the atmospheric transparent window.52

In 2021, Tao et al.40 developed a mass-productive meta-
fabric with high emissivity for outdoor radiative cooling
textiles. The excellent mechanical properties, breathabil-
ity, washability, and well-developed textile manufactur-
ing techniques enable wide adaptability to extreme
outdoor thermal environments.

When the ambient temperature and/or the metabolic
heat generation is exceedingly high, evaporation domi-
nates the human body thermoregulation. At a mild state,
about 20% of heat dissipation of the dry human body
relies on water vapor loss via insensible perspiration.53,54

With a further increase of heat gain, the evaporation of
liquid sweat facilitates more and more heat loss and
becomes the major route for human body heat dissipa-
tion in intense scenarios such as heavy exercise and hot
environments.55,56 Compared with traditional textiles,
fabrics with unidirectional sweat transportation function-
ality could drive the sweat through the human skin
through capillary pores and then guide it to the outer sur-
face for fast evaporation.57,58 To realize the functionality,
the construction of an asymmetric surface structure,
including fiber morphology, wettability, and surface
energy gradient is a standard method.59 For example, in
2019, Wang et al.60 developed a biomimetic fibrous mem-
brane by combining a multibranch porous structure with
multilayer micro- and nano-fibers. The smart fabric
shows an outstanding water evaporation rate of
0.67 g h�1, which is 5.8 and 2.1 times higher than the cot-
ton fabric and Coolmax fabric, respectively.

In some cases, the heat transfer within the textile
becomes the limiting factor for the human body cool-
ing.54 One extreme case is that only the textile surface,
instead of the human skin, can be cooled. Therefore, heat
conduction for the textile should be considered. For
IR-opaque textiles, conduction dominates the heat trans-
fer at the interface between human skin and the inner
surface of the textile. It is also the only way of heat trans-
fer in the textile itself. Traditional textiles typically have a
low thermal conductivity, such as 0.07 W (m K)�1 for
cotton and 0.087 W (m K)�1 for silk.61 Coating functional
materials with high thermal conductivity, such as carbon
nanotubes (CNT) or graphene, on fiber surfaces is a via-
ble approach to enhance thermal conductivity. The ther-
mal conductivity of CNT/resin-coated cotton fabric can
be increased to 0.1 W (m K)�1.62 This high conductivity
promotes heat transfer from skin to the outer side of tex-
tiles, realizing a 3.9�C lower equilibrium surface tempera-
ture than the uncoated cotton fabrics.

Multiple heat pathways can be incorporated together
to further improve the overall cooling effect and expand
the application scenarios.63–66 For example, by synergiz-
ing radiation and evaporation, radiative cooling can slow
down water evaporation and extend the evaporative

cooling period. When evaporation stops, radiative cooling
can still work independently and play a long-term cool-
ing effect.67 Another example is the combination of heat-
conductive pathways and water transport channels in
fabrics.54 Evaporative cooling mostly happens on textile
outer surface. While spreading sweat to the textile's top
surface, the heat conduction pathway transfers the heat
generated by the human body to the location of evapora-
tion, promoting fast evaporation. Meanwhile, it effi-
ciently delivers the evaporative cooling effect to the
human skin. As people's exposed environment and body
metabolism status frequently change, these kinds of syn-
ergistic cooling methods that can utilize multiple heat
transfer pathways are highly effective.

3 | THERMOREGULATION AS A
PREVENTIVE MEDICINE

Tunable wearables that can modulate the heat transfer
coefficients are another approach for better adaptation to
the changing environment.74 So far, our discussion
mainly focuses on single-functional static cooling. While
this is the top priority in extremely hot weather, static
cooling-only textiles cannot satisfy the ever-changing
physiological and environmental conditions. When we
consider the immense illness and death toll related to
heat, wearable thermoregulation essentially becomes a
type of preventive medicine. In this regard, the criteria of
health-oriented thermoregulation extend beyond static
cooling function towards dynamic controllability and var-
ious sensors that can complete the feedback loop and
maintain thermal comfort in an autonomous and perso-
nalizable manner. In 2022, Chen et al.24 developed a
wearable variable-emittance device (WeaVE), which is
a layered semi-solid electrochemical cell with electrode-
posited polyaniline (PANI) on electrodes. As the carrier
concentration and optoelectrical property of PANI can be
varied by switching continuously and reversibly between
oxidation/reduction states, WeaVE is able to realize mid-
IR electrochromism, which can dynamically control the
emissivity to stabilize the radiative heat loss under vary-
ing ambient temperature. The autonomous tuning system
is further demonstrated by incorporating a humidity and
temperature sensor and a controlling electronic compo-
nent. Dynamic thermoregulation tunable devices have
the potential to be integrated with other types of wear-
able sensors, such as yarn temperature sensors that
embed carbon nanotube (CNT) and ionic liquid as
temperature-sensitive materials within a twisting yarn.69

Besides providing real-time temperature signals, wear-
able sensors are also crucial in monitoring human perspi-
ration conditions, which can be indicated by the sweat
sensor and humidity sensor. The detected human
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perspiration conditions offer feedback to the thermoregu-
lation module and indicate whether radiation cooling or
evaporation cooling should be dominant and thereby per-
form the tuning. Therefore, by integrating wearable sens-
ing systems, responsive thermoregulation textiles are
capable of working in various situations, such as indoor/
outdoor and static/moving scenarios under hot weather.

The above-mentioned static, passively adaptive, and
actively adaptive thermoregulation methods modulate
thermal comfort based on heat gain and dissipation con-
trol. They require low or no energy consumption, which
could provide long-term body cooling and work as pre-
ventive medicine in the context of global warming. On
the other hand, in situations of extreme weather or
health-threatening emergencies where a significant
need for cooling exists, active thermoregulation that can
achieve a higher cooling power is able to function as
personalized medical rescue equipment for emergency
first-aid purposes. For example, TED can deliver more
than 10�C cooling effect of the device by tuning the
input current.26 These thermoregulation methods will
be effective in cooling body's core temperature during
hyperthermia. By in conjunction with other measures
such as rehydration and rest, cooling devices may
reduce the symptoms and prevent more serious compli-
cations from developing.

4 | FUTURE OUTLOOK: OPEN THE
DATA COMMUNICATION, CLOSE
THE FEEDBACK LOOP

To step further to the medical side of applications, wear-
able sensors can probe real-time human physiological
signals,75 which allows personalized clinics to give treat-
ment or guidance when the person gets heat-related ill-
ness in the first place. Such smart diagnostic textiles have
the potential to enable continuous physiological monitor-
ing while freeing patients from cumbersome clinic
visits.71,76,77 Wearable electrodes have been researched
for the detection of bioelectrical signals such as electro-
cardiograms (ECGs), electroencephalograms (EEGs), and
electromyograms (EMGs). These electrodes can measure
the activity of the heart, muscles, and brain by detecting
the electric potentials on the surface of living tissue.71,78

For example, flexible conductive artificial silk textile
patches made of PEDOT were reported for continuous
monitoring of EMG, with a design that allows for easy
and conformable positioning on the skin.79 These phyco-
logical signals will help diagnose heat-related diseases,
such as cardiovascular diseases and neurological disor-
ders. Moreover, a fibrous human sweat sensor that can
measure the metabolites and biomarkers (e.g., glucose,
lactate) and electrolytes (e.g., Na+, K+, and Ca2+ ions)

from perspiration is able to monitor health status in a
non-invasive manner.70,80,81 The concentrations of Na+

and K+ in sweat are considered as effective biomarkers
for detecting dehydration, which easily happens when
the body is producing a high rate of sweat under extreme
weather. Real-time detection of these biomarkers can
monitor the progressive dehydration, protecting individ-
uals from more severe health risks, such as heat exhaus-
tion.82 In 2018, Wang et al.83 developed independent
fiber sensors into electrochemical signal detectors by
coating active materials onto CNT fibers. Different fibers
are further assembled into a woven fabric and work
together to realize the multiplexed sweat-sensing system.
The fiber-yarn-fabric multilayer textile structure
increases the wearing comfort and human body confor-
mity of the sweat sensors. Other health-related physiolog-
ical signals, such as respiratory information can be also
detected using wearable devices.84,85 Respiration rate and
respiratory arrest are critical vital signs in determining
heat-related diseases and death. To realize real-time mon-
itoring, a smart mask incorporated with a yarn humidity
sensor and Inductance-capacitance (LC) wireless testing
system was developed.72 Profiled fibers with a fast water
molecular transportation capability were used as water
transportation dielectric yarn, resulting in a fast
humidity-capacitance response and recovery for the yarn
sensor. These real-time health signals are further trans-
mitted to cloud servers and accumulated for big data
analysis.

In sum, smart textiles and wearable devices are the
keys to facilitating personalized health care and public
health by enhancing adaptability to climate change. First,
wearable devices that accumulate individual data can
broaden the database for public health.86 At present,
most phenotypic health data is collected from patients
who have advanced diseases and are in a clinical setting
where diagnostic procedures have been or are being con-
ducted.87 Comparable data from the healthy population
and those in the very early stages of disease development
are lacking, as well as reference data of the exposed envi-
ronment temperature and humidity of the patients. With
wearable sensors detecting individuals' physiological sig-
nals and environment information, representative sam-
ples and larger group sizes can be established, which
results in more robust predictive models, thereby better
revealing the impact of global warming on human
health. Second, leveraging insights from population data
can enhance personalized healthcare.88,89 For example, if
a patient displays features similar to those of a population
exposed to a hot temperature, one can increase the diag-
nostic efficiency by considering assigning treatments
already shown safety and efficacy. Third, integrating indi-
vidual, population, and environmental data helps paint
health trajectories and forecast future health crises
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caused by extreme weather, which is important for both
individual and public healthcare. Comparing real-time
individual and environmental information with historical
datasets facilitates early disease discovery and better
future prediction.90 Based on these predictions, an instant
preventive alarm can be sent to the individual who might
be at risk of heat-related diseases or death. In the era of
5G and the Internet of Things (IoT),91,92 those predictions
and alerts can be quickly announced to the public or
individuals by portable or wearable electronics, such as
smartwatches or mobile phones, so that people can take
protective measures to stay safe under extreme weathers.
Therefore, a health-oriented closed loop can be achieved
based on parallel thermoregulation and multiple data
inputs from the physiological, environmental, and psy-
chological cues, promoting individuals and the public to
better adapt to global warming.

There are still numerous challenges to overcome in
the pursuit of a health-oriented feedback loop. First, for
thermoregulation devices that show potential as preven-
tive medicines in extreme weather conditions, substantial
cooling power is typically required during emergency sit-
uations. The primary concern is how to enhance cooling
performance while minimizing energy consumption. One
promising solution is to explore the synergistic effects of
different cooling pathways in textiles, which could con-
tribute to a significant boost in cooling power. Second,
the integration of thermoregulation devices and multi-
functional sensing presents a crucial and challenging task
without compromising wearing safety and comfort. Many
advanced sensors employ nanomaterials such as gra-
phene or carbon nanotubes as detecting materials, which
may pose safety concerns if they enter the human body.
In addition, they may lack abrasion resistance, washabil-
ity, and wearing comfort. Consequently, a more stringent
assessment of wearable devices is essential before they
can be widely applied to individuals. Third, the presence
of interference between sensing networks can result in
measurement errors or baseline shifts in long-term wear-
ing. In this regard, the utilization of machine learning
algorithms for data analysis can be beneficial in mitigat-
ing such interference-related issues.
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