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Recent advancements in deep learning techniques offer promising solutions for the challenging
task of optimizing batteries, particularly in improving electrodes and electrolytes. This review
the application of deep
electrochemical problems related to batteries, bridging the gap between artificial intelligence and
electrochemistry, and aims to inspire future progress in both scientific understanding and practical
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ABSTRACT

High-performance batteries are poised for electrification of vehicles and therefore mitigate greenhouse gas emissions,
which, in turn, promote a sustainable future. However, the design of optimized batteries is challenging due to the nonlinear
governing physics and electrochemistry. Recent advancements have demonstrated the potential of deep learning
techniques in efficiently designing batteries, particularly in optimizing electrodes and electrolytes. This review provides
comprehensive concepts and principles of deep learning and its application in solving battery-related electrochemical
problems, which bridges the gap between artificial intelligence and electrochemistry. We also examine the potential
challenges and opportunities associated with different deep learning approaches, tailoring them to specific battery
requirements. Ultimately, we aim to inspire future advancements in both fundamental scientific understanding and
practical engineering in the field of battery technology. Furthermore, we highlight the potential challenges and
opportunities for different deep learning methods according to the specific battery demand to inspire future advancement
in fundamental science and practical engineering.
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applications ranging from energy storage [6-12], carbon capture
[13-16], green energy generation [17-20], and smart buildings
[21-26]. Among these technologies, battery plays an essential role
in storing intermittent solar and wind energy for large-scale
electrification [27-29].

The battery is a complex electrochemical system governed by
chemical reactions, charge, and ion transport in solid and liquid
phases, making it challenging to describe with simple physics
formula [30]. Additionally, the electrode microstructures and
electrolyte environment, including transfer number, conductivity,

1 Introduction

To mitigate greenhouse gas emissions and air pollution, next-
generation clean energy and sustainable fuels are urgent to be
developed [1,2]. Over the past few decades, renewable
technologies such as hydropower, wind power, solar
photovoltaics, and bioenergy have gained increasing significance
in the quest for green electricity. According to a report, the power
generated in the net zero scenario has increased from 19.8% to
28.7% between 2010 and 2021, with an ambitious goal of 60.9% in
2030 [3]. Furthermore, the global electric vehicle stocks have

experienced significant growth, increasing from 11.3 million in
2010 to 2020, indicating a trend towards electrification for net zero
emission transportation [4]. Additionally, industry-wide cost
estimates for battery packs used in electric vehicles have decreased
by approximately 14% annually between 2007 and 2014, from
above US$1,000 per kWh to around US$410 per kWh, with the
cost of battery packs used by market-leading battery electric
vehicle (BEV) manufacturers even lower at US$300 per kWh and
declining by 8% annually [5]. These trends indicate a major
transition towards renewable electricity, and electrochemistry is
emerging as a powerful tool for energy and sustainability, with

and viscosity, significantly impact the battery’s performance in
terms of charging and discharging rates, cycle life, and energy
density. Although researchers have made significant progress in
material synthesis through experiments and first-principle
modeling, accurate and versatile prediction tools are urgently
needed to explore optimal battery performance and reduce EV
market prices under various scenarios, crossing large time and
length scales and different application conditions.

The rapid development of deep learning (DL) algorithms has
stimulated materials discovery by combining accurate first-
principle simulations, autonomous synthesis, and testing
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Figure1 Overview of deep learning enabled battery design.

experiments [31-44]. DL models can predict electronic,
thermodynamic, and mechanical properties of the battery and its
materials effectively, given a finite number of training datasets
generated from experiments and/or simulations. In recent years,
researchers have actively endeavored to explore the potential of
DL in the field of battery design. In 2016, researchers started to
apply DL techniques to predict the material properties of batteries,
marking the inception of DL’s role in battery design [45]. Then,
within the materials science field, significant progress was made in
advancing machine learning (ML) models to discover novel
materials [40]. In the following years, especially 2019 and 2020,
researchers developed and customized ML and data-driven
methodologies to optimize fast-charging protocols and predict
battery cycle life [46, 47]. The application of ML and DL became
more diverse in battery research, with researchers delving into the
analysis of battery structures [48], electrolytes [49], and their state-
of-charge assessments [50]. A promising avenue for future
research lies in the synergistic fusion of advanced characterization
tools with artificial intelligence [51]. Indeed, integrating DL
models into traditional experiments and simulations reduces the
time and cost required for discovering and characterizing new
electrode/electrolyte materials and additives for high-performance
batteries, such as large capacity, high cycle life, strong mechanical
strength, and improved safety. This contributes to the promising
trend of electrification. In this review, we first elucidate basic
algorithms in DL and then review recent applications of DL in
electrode and electrolyte design (Fig. 1). We aim to bridge the gap
between the battery design and artificial intelligence (AI) and
inspire scientific and technological developments in materials
science, computer science, and engineering to harness the battery’s
potential for sustainability.

2 Basic principles of machine learning and deep
learning

We begin by offering a comprehensive overview of the
fundamental principles and key concepts of commonly employed
ML algorithms, spanning from simpler models like linear
regression to more complex approaches such as probabilistic
models and DL algorithms. Note that DL can be viewed as a
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subset of ML, except that it employs structured frameworks such
as neural networks and often relies on large input datasets for
optimal performance. Subsequently, in Sections 3 and 4, we will
delve into their applications in electrode and electrolyte design and
conduct a comparative analysis with traditional design methods. It
is important to highlight that while classification models play a
crucial role in the field of ML, we will focus the discussion here on
regression, which is common in battery design. Broader discussion
of ML techniques are available elsewhere [52, 53].

21 Linear regression

We often begin modeling by assuming a linear relationship
between the input features and targets before exploring nonlinear
models. Suppose that we have a training set of independent input
features X = {x,,x,,...,%y} and target labels y = {y., 5., ..., v }.
The relationship between X and y is given as

y=wx,+efori=12,....N

(1)

where N is the total number of samples in the training data, w is a
vector of parameters and € is an unobserved noise (sometimes
referred to as unexplained variability) term. When x; is multi-
dimensional and y; is one-dimensional, the method is referred to
as multiple linear regression (MLR). Our objective is to estimate w
in such a way that the error between the predicted values ¥; and
the target labels y; is minimized on unseen data. It is worth noting
that, for MLR, when we set the minimization objective to be the
squared loss between the predicted values and the target labels, i.e.,
Yo, (7 —7), this is equivalent to maximizing the likelihood
function p (Y| X, w), assuming that the noise € follows a Gaussian
distribution. Other linear methods, suggested as linear support
vector regression [54], use alternative objective functions.

To make sure that the trained model generalizes to other data
points which do not appear in the training set, we can add
penalization terms on w, leading to a penalized MLR (PMLR)
model. PMLR models, such as ridge [55] or lasso [56] regression,
have at least one setting (or “hyperparameter”) that most be
chosen. Typically, this is chosen by randomly splitting all the
available data into training, validation, and test datasets. The
parameters are fit on the training data for a given set of
hyperparameters and evaluated on the validation data. The
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hyperparameters with the highest performance are chosen as the
final model, and performance is evaluated on the test set to get an
estimate of real-world performance. Model validation is critical for
optimal scientific evaluation and should receive careful
consideration.

2.2 Probabilistic algorithms

As described in Section 2.1, minimizing the squared error between
the targets and predicted values is equivalent to maximizing the
likelihood function so that the observed data is most probable,
which gives us a point estimate for the parameters w. Instead, we
may want to fully capture the posterior probability density
p(w/X,y) to gain a comprehensive understanding of the
parameter distribution and the model uncertainty (52). To achieve
this, we assign a prior distribution on the model parameters and
then use the observed data to update this prior. For example, to
apply a Bayesian treatment on the multiple linear regression
model in Section 2.1, instead of directly fitting the parameters w,
we introduce a prior distribution over w and e:
p(wla)=N(0,aI), p(e|f) =N(0,f"), where a and B are
precision parameters. Using the observed data D = {X,y}, we can
calculate the posterior distribution p (w|D,a, ) < p(D|w,a, B)p
(w|a) and make inference on a new data point x* via the
predictive posterior below

P()’*|x*7D70¢7ﬁ) - J.P()/*

which not only estimates the value of y* but also gives an
uncertainty estimate of the prediction. Such Bayesian treatments
can be widely applied to many types of models.

A key relevant development from the Bayesian framework is
the nonlinear and non-parametric approach called Gaussian
process (GP), with which we define a prior distribution over
functions and use the observed data to infer the posterior. Any
finite number of random variables in a GP have a multivariate
Gaussian distribution determined by the parameters of the GP
[57]. A GP prior over a function f is completely specified by its
mean function m(x)=E[f(x)] and covariance function

k(%) = E[(f(x) —m (x)) (f(x) — m(x))]

f(x) ~ GP (m (), k (x, %)) (3)

x,D,w)p(wD,a,B)dw  (2)

The covariance function defines the smoothness properties of
the function. After fitting a GP, we can draw samples from the
learned posterior distribution of functions evaluated at any
number of inputs. In practice, GPs can be effectively utilized to
incorporate prior information into functions or integrated with
DL models to improve their predictive performance [58].

A typical application of GP is to serve as a surrogate model for
Bayesian optimization when fine-tuning hyperparameters. This
strategy offers greater efficiency compared to conventional
hyperparameter tuning methods like grid search, as it dynamically
determines the subsequent set of hyperparameters based on the
model performance with respect to the preceding set [59, 60]. To
give a concrete example, say we want to learn a function f: X — Y
to the observed data, ie., ¥ =f(x), using a supervised learning
model with hyperparameters y. In most cases, hyperparameters
are specified before training and we need to manually tune them if
the model performance is unsatisfactory. Here, with Bayesian
optimization, we treat y as the input to a GP and the model
performance s (e.g., performance on the validation data) as its
output, ie., s(y) ~ GP (0,k(y,y')). After fitting the GP, for each
y, we can sample from this GP to obtain the mean performance

p,=u(y) and its uncertainty o, =o(y). We then use the
acquisition function g on these values to determine an appropriate
next set of hyperparameters to evaluate. A common choice of
acquisition function is the upper confidence bound (UCB) as
given below (some other popular acquisition functions include
probability of improvement (PI) and expected improvement (EI))

g(y:d) = p,+ Ao, (4)

where A is an acquisition function parameter that controls the
tradeoft between exploration and exploitation. Specifically, if A is
small, then g(y;1) will be dominated by y,, meaning that we
favor the solutions that have higher expected model performance.
If A is large, then g(y;A) will be dominated by o,, meaning that
we prefer to explore the domains where we are uncertain about
the model performance and might have higher performance. We
determine the next set of hyperparameters by maximizing this
acquisition function

Voo = argmaxg (y34) (5)

This process is repeated until we find the best set of
hyperparameters y* which yields the best possible performance.
This procedure can also be adapted to choose experimental
settings in a wide array of contexts.

2.3 DL algorithms

The previously mentioned general ML algorithms depend heavily
on the representations of the given data and are usually
uncompetitive when the input x is intricate, such as image,
audios, and videos [61]. To address this issue, instead of directly
learning a mapping from the input space to the output space, it is
necessary to learn the representation itself, and this is precisely
where DL demonstrates its superiority. Over the past few decades,
DL models have been extensively used in the field of computer
vision [62-64], natural language processing [65-67], causal
inference [68-72], healthcare [73-75], and environmental sciences
[76-78].

2.3.1 Multilayer perceptrons (MLPs)

MLP, or feedforward neural network (NN), is a commonly used
DL models. MLP is a general ML method that also does not
handle intricate data types, but we review it here as it forms the
foundation of more complex DL approaches that take advantage
of the structure of the more complex data types. It aims to learn a
nonlinear functional mapping y =f;(x) which maps an input
vector x to an output representation y. Here 0 represents the

Input Hidden Hidden Qutput
layer layer 1 layerL -2 layer
LN ]

[ N )

LN ]

LN

Figure2 Architecture of a multilayer perceptron.
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parameters of the neural network. A MLP with L layers is
displayed in Fig. 2 below, where the network consists of an input
layer, an output layer, and L — 2 hidden layers.

As shown in Fig. 2, the input layer has the same number of
units as the dimension of the input vector (i.e., D-dimensional in
this case). It takes in the input x and passes it to the first hidden
layer. Each two consecutive hidden layers are connected by a set of
weights and biases along with an activation function. Specifically,
let us denote the i* pre-activation and post-activation unit in the
I" layer as z; and x, respectively. Also, we denote the weights and
biases in the I layer as W}, and b}, respectively. We can compute
Z. iteratively using Eq. (6)

N;

Z =1 +Z Wil x=¢ (z]’.’l) (6)

§75 7

where N; is the number of units in the [* layer and ¢ is a
nonlinear activation function. As can be seen from the equation
above, W and b; define an affine transformation between the
(1—1)" and the I layers. In the absence of ¢, the MLP would just
be a sequence of affine transformations which is not capable of
capturing nonlinear functional relationships, underscoring the
necessity of nonlinearity. Some frequently used nonlinear
activations include the rectified linear units (ReLU) [79], leaky
ReLU [80], and hyperbolic tangent (tanh) [81]. The selection of
the activation function for the output layer is typically dependent
on the specific task at hand. For instance, the identity function
may be used for regression, the sigmoid function for binary
classification, and the softmax function for multi-class
classification. The size of the output layer is also dependent on the
task at hand; in the case of a single regression prediction, there
would only be a single output unit.

The training process of neural networks is similar to that of the
linear regression models as we have discussed in Section 2.1. For
example, we can learn the neural network parameters 6 to
maximize the likelihood function p (X, Y|6), which is equivalent
to minimizing a squared error for regression or a cross-entropy
error for classification. Gradient-based methods, including mini-
batch gradient descent and stochastic gradient descent, are often
used to optimize the neural network parameters with respect to
the loss function by back-propagating the gradients [82]. It is

X w

A

important to highlight that the nonlinearity in neural networks
gives rise to a nonconvex loss surface; however, in practice
gradient methods find good solutions on the loss surface [82].

2.3.2  Convolutional neural networks (CNNs)

CNNss [83,84] are a well-established class of DL models, widely
recognized for their ability to effectively process complex input
data with multiple channels (e.g., audios, images, and videos).
Standard CNNs usually include two types of operations:
convolution and pooling. These convolution and pooling
operations are designed to take account of structure in the data,
such as the common structures in images. These operations allow
CNN:ss to drastically outperform MLPs in many types of data, and
CNNs form the foundation of top performing computer vision
models. An example of two-dimensional (2D) convolution layer is
shown in Fig. 3 below.

In the figure depicted above, the input and kernel (or filter) of
the convolutional layer are represented by X and w, respectively.
Notably, the size of the kernel is typically smaller than that of the
input, resulting in partial connectivity between each output unit
and the input units. This design choice significantly reduces the
computational cost and enables the CNN to extract meaningful
features from small sub-regions of the input.

The pooling operation, on the other hand, applies a summary
statistic (e.g, maximum and average) to each sub-region of the
input by sliding a kernel (or filter) with a certain stride size,
resulting in an output with reduced dimensions compared to the
input. Pooling introduces local invariance properties to the output,
including translational and rotational invariance. Translational
invariance is achieved because the pooling operation is applied
independently to each sub-region, allowing it to detect the same
features regardless of their position within the sub-region.
Rotational invariance is a consequence of the pooling operation
being insensitive to the orientation of the features within the sub-
region. These local invariance properties make the output more
robust to small changes in the input, improving the generalization
performance of the CNN.

2.3.3 Recurrent neural networks (RNNs)

RNNs [82, 85] are a family of DL models for processing sequential
data such as time series and text streams. The hidden units in

X w

X11 | X12 || ¥13 | X14 Wi ||| Wiz

X11|| X12 | X13 || X14 wyq ||| Wiz

X31 || X32 | X33 | X34

Xa1 || Xa2 | Xa43 | Xaa

X21 || X22 | X23 || X24
Wa1 ||| Waz

X31 [|X32 | X33 | X34

Xa1 [|Xa2 | %43 | Xaa

X11W11 + X12W12 +
X21W21 + Xo2Wpp

X12Wq1 + X13W12 +
Xp2W21 + X33Wa2

X13W11 +X14W12 +
X23Wa1 + X24W22

XWig1 + X2owyp +
X31Wa1 t+ X33Wy

XpaW11 T Xp3Wyp +
X33Wa1 + X33Wap

Xp3W11 + Xp4Wip +
X33Waq T X34Wp)

X31W11 + X3Wyp +
X41W21 + X42W22

X3aWy1 + X33Wyp +
X42W21 T X43W22

X33W11 +X34Wip +
X43W21 + X4aW22

Figure 3 An example of 2D convolution layer with a kernel size of 2 x 2.
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Figure4 Computation graph of a fully recurrent neural network.

RNNss are usually referred to as states (denoted as variable h). The
computational graph, both before and after unfolding, of a fully
RNN (FRNN) is illustrated in Fig. 4, where each output unit 0 at
time step ¢ is connected to each input unit x". This connectivity
enables the network to retain and utilize information from all
previous time steps, allowing it to capture temporal dependencies
and patterns in the input data. The training procedure for RNNs is
relatively ~straightforward, as the gradients are propagated
backward along the unfolded computation graph. This algorithm
is commonly known as backpropagation through time (BPTT)
[86].

One of the significant challenges associated with RNNss is their
inability to handle long-term dependencies when the unfolded
computational graph becomes extremely deep. Specifically, the
forward pass of an RNN involves repeatedly applying the same
affine transformation and a nonlinearity, as depicted in Fig. 4, the
gradient may either vanish or explode, rendering the RNN
difficult to train. The vanishing gradient problem occurs when the
gradient becomes extremely small, making it difficult for the
network to learn from past information. On the other hand, the
exploding gradient problem occurs when the gradient becomes
exceedingly large, making the network learning unstable.

Several techniques have been proposed to address the vanishing
and exploding gradient problem in RNNs. For instance, gradient
clipping can prevent the gradient from exploding, while parameter
regularization can help with the vanishing gradient issue. One of
the most notable solutions is the introduction of the long short-
term memory (LSTM) model by Hochreiter and Schmidhuber
[87]. The LSTM model allows the RNN to learn whether to
remember or forget relevant information using gated memory
cells, making it particularly well-suited for processing long
sequences of data. Another variant of the LSTM model is the
gated recurrent unit (GRU), which has a simpler structure but
performs comparably well to LSTM [88, 89].

Despite these advances, recent developments in ML have
shown that attention mechanisms [90] and transformer
architectures [67] outperform RNNs in many cases. Attention
mechanisms allow for modeling dependencies between different
parts of a sequence without regard to their distance in the input or
output sequences. The transformer architecture, which is based
solely on attention mechanisms and does not use recurrent
connections, has achieved state-of-the-art results in many natural
language processing and computer vision tasks. Therefore, while
RNNs continue to be a valuable tool for ML applications,
attention-based models have emerged as a promising alternative
for modeling sequential data.

234  Deep generative models

Unlike regression-based models or conventional neural networks
that directly estimate the conditional probability of the target

4
{ R ‘|
\ 7

variable given the input, ie., p(y|x), generative models estimate
the joint distribution p(x,y) on both the input and the target
variable (or just the data p (x)). Many deep generative models are
based on modifying the structure an autoencoder (AE), which is a
neural network comprising an encoder function z = f(x) that
maps the input x into a latent feature z and a decoder function

=g(2z) = g(f(x)) that reconstructs the input x. f(-) and g(-) are
defined as neural networks, and can easily use MLPs or CNNs (for
a deep convolutional AE [91]). In practice, AEs have been
successfully applied to many tasks including dimensionality
reduction, representation learning, and information retrieval, but
are not natural generative models without modification.

One extension to form a deep generative model is the
variational AE (VAE) framework of Kingma and Welling [92].
The VAE defines the latent feature 2z as an unobserved continuous
random variable with a prior distribution p(z). The observed
variable x is then generated from a conditional distribution
P (x]z), which is defined by adding a distribution to the decoder,
such as x~ N(g(z),0’I) (I is the identity matrix). However,
computing the marginal distribution p(x) = [p(x|2)p(2)dz is
typically infeasible, which also makes the postenor of the latent
variable p(z]x) =p(x|z)p(2) /p(x) computationally intractable.
Thus, the VAE introduced a variational Bayes approach to
optimize an approximation of  the posterior,

p(2l%) ~q(2l%) = N (f(x),,diag (f1x),.) ), meaning that ~the
encoder estimates both the mean and the variance of the posterior
approximation. This framework can be trained using the evidence
lower bound objective common in variational Bayes [92].

An alterative deep generative model is the generative adversarial
network (GAN) [93] that consists of two models: a generator
f:(2;0,), which maps an input noise variable z into the data
space, and a discriminator f; (x;6,), which evaluates whether an
input x comes from real data or from the generator by outputting
a probability 0 <f,(x) <1. Here 6, and 0, represents the
parameters of the generator and the discriminator, respectively.
The generator and discriminator models are trained concurrently
in an adversarial minimax game until the generator produces
samples that cannot be distinguished from real data by the
discriminator. Specifically, f, and f; are optimized by playing the
following minimax game with value function V (f,, f:)

—fa(fe (2)))]
(7)

Given arbitrary functions f, and f;, it is theoretically established
that, under reasonable assumptions, f, will recover the original
data distribution [93,94]. The applications of GAN are diverse,
including image synthesis, style transfer, image-to-image
translation, and text-to-image generation.

Additionally, the diffusion model [64,95] represents another

H}inmfax V(farfe) = Eroppnato [10gfa (%)] + Eooppe [log (1

https:/www.sciopen.com | https:/mc03.manuscriptcentral.com/nre | Nano Research Energy
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type of deep generative model that has gained increasing
popularity. However, the diffusion model as it has not been
extensively used for electrode and electrolyte design. Nevertheless,
we acknowledge its potential as a promising direction for future
research in this domain.

Together, VAEs, GANs, and diffusion techniques are now
fundamental tools that are helping to power the current generative
Al revolution [96].

3 Deep learning-assisted electrode design

Developing fast-charging batteries is critical for the electrification
of transportation to mitigate carbon emissions and climate
change. The U.S. Department of Energy has set an ambitious goal
of enabling electric vehicles to recharge under 10 min, covering a
distance of 200 miles [28,97]. This objective presents significant
challenges and opportunities for scientists and engineers to
overcome conventional obstacles in different aspects and scales.
The main hurdle is balancing the battery’s capacity and charging
rate. Most batteries struggle to maintain high capacity when
charged quickly due to the mass transport limitation and the
ineffective utilization of deep electrode materials. Addressing this
issue requires rational designs of the electrode microstructures and
materials. However, with increasing resolutions of electrode design
and characterization, more complex datasets are generated,
leading to a need for advanced analysis techniques to extract
detailed insights about samples. As a result, DL models become
viable tools to assist in the analysis and deduction of complex
datasets and parameters space and bridge the gap between
experimental data and multiphysics modeling.

3.1 Governing physics and traditional methods

Within battery systems, the solid-state matrices (or active
materials) play a crucial role in facilitating the transport of
electrons, and the electrolyte is responsible for enabling the flow of
ions between the positive and negative electrodes. However, the
tortuous path of the porous electrode, due to the randomly packed

Electrolyte Cathode
(c) 100
i a =
< 80 a =
3 1 a, =10
© 60+
c
o ]
©
3 40
s i
20 //
0 T T T T
0.0 02 04 0.6 08 1.0
Porosity

Figure5 Key challenges of ionic transport in porous electrodes under fast-
charging. (a) High tortuosity in the traditional porous electrode. Reproduced
with permission from Ref. [99], © WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim 2018. (b) Non-uniform ions distribution in the porous electrode.
Reproduced with permission from Ref. [100], © American Chemical Society
2022. (c) Penetration depth as the function of porosity.
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particles, can hinder the ionic transport, resulting in elevated
resistance and a reduction in battery performance (Fig. 5(a)).
Thus, the degree of turning of the ionic path in a porous electrode
is defined as its tortuosity (7). This parameter is crucial as it
directly impacts capacity under high current density. The
tortuosity can be mathematically represented as

T sDc“ (8)
where the ¢ is the overall porosity of the porous electrode, D, is
the diffusivity of electrolytes, and D, is the effective diffusivity of
the ions through the whole porous electrode. In general, an
elevated level of tortuosity results in increased ion transport
resistance, thereby negatively affecting the performance of the
battery. Conversely, a lower degree of tortuosity promotes faster
ion transport, which enhances the battery’s overall performance
and its efficiency. In other words, tortuosity is an essential
problem that needs to be solved for porous electrodes.

In addition to tortuosity, the reaction rate distribution is
another essential factor governing electrochemical kinetics. The
nonlinearity of the Nernst-Planck equation causes a significant
gradient in ionic concentration and reaction rate along the depth
of the electrode. These gradients lead to poor utilization of deep
(far from the separator) electrode materials when attempting to
improve energy and power density via thick electrodes (Fig. 5(b)).
This non-uniform distribution is highly dependent on the
electrode’s porous structures. To elucidate this phenomenon, we
introduce a physical term called “reaction penetration depth”
based on John Newman’s theory for a one-dimensional (1D)
porous electrode [98]. This theory simplifies the three-
dimensional (3D) partial differential equation groups to a 1D
form. If we solve equations by inserting boundary conditions and
physical assumptions, we can get a relationship between the
reaction penetration depth (PD) and the porosity of the electrode

PD = al\/f (9)

where 4, is the constant related to materials properties (ie.,
electronic and ionic conductivity and size of active materials
particles) and ¢ is the porosity of the electrode. The equation
indicates that increasing the electrode porosity can facilitate deeper
reaction penetration, resulting in improved specific capacity
during high C-rate charging. Figure 5(c) demonstrates the
improvement of penetration depth through an increase in average
porosity. Varying a,, or the material properties, implies that this
penetration depth relationship applies to different electrode
materials and electrolytes. Hence, to enhance the performance of
the battery during fast-charging, it is crucial to develop an optimal
electrode structure and select suitable materials to balance out the
gradient distribution of the reaction rate and alleviate the effects of
tortuosity.

Significant process has been made to improve the battery fast-
charging performance by designing the microstructures and
materials. Ramadesigan et al. first tried to solve the gradient issue
theoretically by optimizing the local porosity of the electrode along
the depth [101, 102]. It was observed that gradual porosity across
the electrode in an optimal manner for a specific amount of active
material can result in a 15%-33% reduction in the ohmic
resistance. In lithium-ion battery design, single objective
optimization such as reducing overall electrode resistance through
a graded design has a modest effect of 4%-6%. Multiple objective
optimizations, such as resistance and overpotential variance,
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allows for a broader design space to achieve multiple goals. Then,
inspired by theoretical progress, Liu et al. developed a bilayer
electrode with gradual porosity [103]. Their research showed that
gradual porosity can decrease capacity fade by about 8.285% in full
cell and 5.29% in half-cell. The increase in porosity enhances the
conductivity and diffusivity of lithium-ions in the electrode and
allows for control of solid electrolyte interphase (SEI) formation.
Additionally, Zhao et al. introduced a gradient electrode design
with vertically aligned porous channels that have smaller openings
on one end and larger openings on the other [104]. It is found that
faster kinetics occur in larger openings with more concentrated
active material near the separator. Similarly, Huang et al.
employed the ice templating technique to produce thick cathodes
(with a thickness of 900 um) based on LiFePO,. The cathodes
were designed to have a pore structure gradient and fast ion
transport pathways, which enable high energy densities at fast
rates [105]. Furthermore, Kim et al. also created stratified
electrodes with Li[Niy¢Co,,Mn,,]O,, which improved the cycle
life [106].

Low-tortuosity or graded porosity electrodes can also be
fabricated by sacrificial template method (Fig. 6). The designed
pore structures form after the templates in the slurry are removed.
Bae et al. used co-extrusion to produce templates and thus macro-
pore channels, with controlled channel spacings. The resulting
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low-tortuosity electrodes have tunable channel spacing down to
~ 15 pm and showed 3 times areal capacity under 2 C charging
rate [107]. Sander et al. utilized magnetic field to align the
sacrificial templates to create low-tortuous electrodes. The
magnetic field can not only align the magnetized nylon rod, but
also the magnetic emulsion droplets [108]. Billaud applied a
similar method and showed the enhanced ionic transport in the
battery [109]. Zhang et al. also combined the magnetic alignment
and ice-template method for low-tortuous electrode fabrication.
Under 10 mA/c’, the electrodes exhibit an areal capacity of
approximately 3.6 mAh/cm® [110]. Despite the notable
advancements achieved by physics-guided research, a gap remains
in attaining the optimal structure in various application scenarios.

3.2 Deep learning method and results

It is apparent that the future of electrode design is heavily linked to
the development of DL, given the challenges of identifying optimal
structures for diverse application scenarios in complex parameter
spaces. Employing DL across the materials synthesis, structure
design, and characterization can significantly enhance design
efficiency and accuracy. In this section, we will discuss recent
progress in DL-assisted electrode optimization and analysis.

As mentioned earlier, one of the significant challenges in
battery design is the slow ionic transport in porous electrodes.

(b)
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Flakes alignment during electrode casting

e

L
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Freeza—dr_’y

Figure6 Low-tortuous electrodes fabrication. (a) Low-tortuous channels in the electrodes and geometric control factors. (b) SEM image of the fabricated electrode.
(a) and (b) Reproduced with permission from Ref. [107], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2013. (c)-(e) Creating the low-tortuous channels by
magnetic field alignment method and ice-template method. Reproduced with permission from Ref. [108], © Macmillan Publishers Limited, part of Springer Nature
2016; Ref. [109], © Macmillan Publishers Limited, part of Springer Nature 2016; Ref. [110], © American Chemical Society 2019.
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While progress has been made in designing low-tortuosity
batteries through vertical channels and gradient active materials
[107-110], optimal solutions have yet to be found. Although
topological optimization has been applied to search for suitable
electrode structures, time-dependent charging problems and the
time-consuming nature of solving 3D finite element models
remain obstacles [111]. To address these issues, Sui et al. drew
inspiration from nature and introduced efficient vascular channels
into the porous electrode to enhance ionic transport and mitigate
non-uniform reaction rate distribution [97]. The vertical central
channels and gradient branch channels reduced tortuosity and
increased reaction penetration depth. Given the large number of
possible vascular channel designs, Sui et al. developed a DL
pipeline to accelerate computation speed (Fig.7). The neural
network, informed by the geometric factors of the electrode,
speeded up computation for all possible electrode designs and
corresponding charging curves by 84 times, compared to the
conventional finite element method. Furthermore, they developed
an inverse design workflow to find the optimal electrode structure
from the total library of computed designs under different
application scenarios, such as varying charging rates. The
workflow delivered a customized package containing electrode
geometric factors, charging curves, charging capacity, and energy
density. With the aid of bio-inspired vascularized design and DL-
based prediction, the optimized porous electrode demonstrated a

Separator

Electrode solid matrix

8 A

66% improvement in capacity under 3.2 C constant current
charging. This work can potentially inspire advancements in the
experimental and theoretical aspects of fast-charging batteries in
the future.

Besides, GANs and CNNs can also be used to design the
microstructure in the electrodes. Niu et al. proposed a
performance-informed learning framework, called  learning, to
generate electrode microstructures informed by electrochemical
performance [112]. This is achieved by integrating GANs and
deep NNs with physical knowledge to accurately predict current
density. The framework was demonstrated in two design
philosophies, inverse and forward design, for solid oxide fuel cell
(SOFC) anodes. The results showed that 7 learning can generate
electrode microstructures with the globally optimal electrode
microstructure. The physical and electrochemical insights
obtained by prediction can guide the rational design of SOFC
electrodes. The framework can be easily transferred to the design
of other porous electrodes in various electrochemical devices, such
as fuel cells and batteries. 7 learning can be further enhanced by
involving high-dimensional multi-physics computation to inform
the generative model (Fig. 8(a)).

In addition to electrode design, characterization is a crucial tool
for understanding physical mechanisms and evolution to advance
the design of batteries. The performance of batteries depends on
the transport of lithium ions and the kinetic process of electrodes,
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which are influenced by microstructure parameters such as
porosity and tortuosity. These parameters play a vital role in
predicting the fast-charging performance. Visualizing electrode
microstructure during the service process is imperative for
optimizing electrode structure and diagnosing potential safety
issues. Fortunately, significant progress has been made in the field
of picture processing and complex structure analysis, providing a
robust framework for electrode microstructure visualization and

analysis [113-116]. Yang et al. studied the evolution of electrode
microstructure in a battery by using a modified U-Net CNN for
high-precision segmentation (Fig. 8(b)) [117]. DL is used to obtain
the porosity and thickness of the negative and positive electrodes
at different states of charge, and the relationship between the
evolution of porosity and thickness during charging. The method
could be extended to measure additional microstructural
parameters using broad ion beam-scanning electron microscopy
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(SEM)/focused ion beam (FIB)-SEM for 3D models in the future,
providing an approach to exploring microstructure evolution and
aiding in electrode structure optimization. Additionally,
Gayon-Lombardo presented a method for creating synthetic three-
dimensional microstructures consisting of several material phases
using deep convolutional GANs (DC-GANSs). This approach
enables the model to represent the statistical and morphological
characteristics of actual microstructures. The study used two open-
source microstructural datasets, and various microstructural
properties were calculated for the real data and compared to the
synthetic structures created by the trained generator. The results
showed excellent agreement, although the synthetic structures had
a smaller variance than the training data [118]. Moreover, Petrich
et al. developed a classifier that distinguishes between three causes
for particle separation using the shape of the gap between particles
[119]. Simulated anode material was used to generate correctly
labeled sample data for developing the classifier. The classifier was
then tested using hand-labeled data from a real electrode,
achieving an overall accuracy of 73%.

4 Deep learning-assisted electrolyte design

In addition to the electrode, electrolyte is another crucial
component that significantly affects the performance of batteries.
Electrolyte plays a vital role in facilitating ion transport in
rechargeable batteries. However, the design of electrolytes for fast-
charging batteries poses a significant challenge. Unlike solid
electrodes, electrolytes are highly disordered, making it difficult to
identify the governing physical factors and optimize their
properties. Additionally, the vast number of possible combinations
of salts and solvents makes it challenging to achieve desirable
performance, because even slight variations in composition can
lead to noticeable performance degradation. For fast-charging
batteries, the need for rapid ionic transport throughout electrolyte
to compensate for high current density exacerbates this challenge.
This complex transportation problem is strongly correlated with
various physical properties of electrolytes, including ionic
conductivity, viscosity, diffusivity, and transfer number. These are
the problems that need to be solved for better electrolytes.
Investigating such a high-dimensional parameter space is
impractical using traditional trial-and-error experimentation.
Furthermore, since optimal battery design is heavily dependent on
application scenarios, identifying optimal electrolytes faces more
obstacles.

To tackle this challenge, DL can be useful for accelerating the
electrolyte design, both for simulation and experimental
approaches. Here we first show some cases for DL-accelerated
numerical simulations. Among all simulation methods, molecular
dynamic (MD) is the most popular tool to simulate liquid
electrolytes. In the electrolyte system, ions lead to a strong local
electric field and cause the polarization of the solvent molecules,
especially for highly concentrated electrolytes. These polarization
terms influence the electrolyte transport properties a lot and
therefore need to be predicted by MD [120]. This prediction can
be effectively accelerated by implementing NN to learn the atomic
polarizabilities and charges [121]. Such an algorithm is only
dependent on connectivity of the atoms within a molecule, so the
dependencies on the 3D conformation can be avoided. Apart from
this, researchers also informed the neural networks with the
surrounding environment of the atoms or molecules to improve
the accuracy and speed of the prediction (Fig. 9) [122, 123]. These
methods offer a widely applicable and automated tool to

i % ma | Sci@pen

inghua University Press

£

comprehend atomic-level dynamics in material systems,
considering the vast quantities of molecular dynamics data
produced daily in almost all areas of materials design. This
provides more insights of the electrolyte properties without
completely screening the whole parameter space or synthesizing
all possible electrolyte candidates, even in shortage of some
physical interactions. To get closer to the cutting-edge battery
technologies, highly concentrated electrolyte is more crucial for
Zinc jon batteries because it can mitigate the hydrogen evolution
reaction. Hence, equivalent methods have been utilized to
examine aqueous Zinc electrolyte, which demonstrates that
utilizing neural network to learn a functional physical potential is
feasible even for extremely disordered systems [124]. They
confirmed that the computational results accurately reproduced
the observed radial distribution function and X-ray absorption
near edge structure spectrum of zinc-water obtained
experimentally. There were also other works that demonstrated
the implementation of ML in the computational study of
electrolytes. Nakayama et al. utilized an exhaustive search with a
Gaussian process to gauge the coordination energy [125]. This
interaction energy will provide physical insights into the ionic
transport of the electrolyte, which is directly related to the
performance of fast-charging Li-ion batteries. Moreover, the
exhaustive search can also be coupled with linear regression (LiR)
to become an ES-LiR model [126]. By using the melting point as a
target property for battery operational temperature windows, ES-
LiR showed the most accurate estimation compared to MLR and
the least absolute shrinkage and selection operator (LASSO)
approaches.

Despite the improved accuracy and efficiency of numerical
simulation, empirical data plays a crucial role in the battery
research domain due to the presence of experimental variations
that cannot be adequately described by physical models.
Considering this, researchers have begun utilizing ML techniques
to facilitate the guidance of electrolyte synthesis experiments. The
Cui group at Stanford University employed linear regression,
random forest, and bagging models to identify key features for
predicting Coulombic efficiency (CE), by utilizing the elemental
composition of electrolytes as model features. They created
fluorine-free solvent-based electrolyte formulations that achieved a
remarkable CE of 99.70% according to the as-trained ML model
[49]. The Viswanathan group presented an autonomous method
for optimizing battery electrolytes using ML and a robot, where
hundreds of sequential experiments were carried out (Fig. 10). A
Bayesian optimization technique was employed to explore
aqueous electrolyte salt mixtures with excellent electrochemical
stability. After conducting 140 electrolyte formula tests over a
period of 40 h, an optimal electrolyte, which was not intuitive, is
finally obtained [127]. An impressive result is that they presented a
dataset of 251 aqueous electrolytes and their conductivities, pH
values, and electrochemical reactions on platinum. In the year
2022, a comparable methodology was employed to analyze non-
aqueous Li-ion batteries, resulting in a six-fold increase in time
efficiency compared to an arbitrary search conducted by the
identical automated experiment [128]. In the experimental
validation test, it was observed that all the pouch cells that were
filled with electrolytes developed by the robot showed improved
capability of fast-charging [128]. Their robotic platform, real-time
ML optimization, and integration with device testing, tailored to
the specific requirement, have the potential to optimize other self-
sufficient discovery platforms for energy and sustainability
application.
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In addition to the aforementioned work, there has been
substantial progress in designing electrolytes using DL. DL models
are instrumental in predicting critical electrolyte properties,
including ionic conductivity, viscosity, and stability. These models
play a crucial role in pinpointing potential candidate electrolytes
tailored for diverse battery chemistries. The molecular
Schrodinger equation serves as the fundamental governing
principle underlying electrolyte systems. Solving this equation
offers detailed insights into chemical reactions occurring within an
electric field. Through the utilization of statistical regression
models, it has become possible to calculate atomization energies
with a remarkably low mean absolute error of approximately
10 kcal/mol [129]. Furthermore, DL, in conjunction with
quantum computation, has been employed for the multi-objective
optimization of electrolyte compositions. Li et al. outlined a DL
workflow integrated with quantum calculations and graph
convolutional neural networks to unearth prospective ionic liquids
suitable for ionic polymer electrolytes. The predicted electrolyte
demonstrated remarkable performance characteristics, including
exceptional capacity retention over 350 cycles (> 96% at 0.5 C;
> 80% at 2 C), rapid charge/discharge capabilities (146 mAh/g at
3 C), and outstanding efficiency (> 99.92%) [130]. DL also plays a
pivotal role in the field of solid-state batteries by facilitating the
discovery of optimized solid electrolytes. Sendek et al. conducted a
guided exploration of the materials space using a DL-based
prediction model for material selection, coupled with density
functional theory molecular dynamics (DFT-MD) simulations to
compute ionic conductivity. Their findings revealed that the DL-
guided search was 2.7 times more likely to identify fast Li-ion
conductors, showcasing an impressive improvement of at least
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Figure9 Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials. (a) Schematics of the graph dynamical networks architecture.
(b) Chapman-Kolmogorov (CK) test comparing the long-time dynamics predicted by Koopman models. Reproduced with permission from Ref. [123], © Xie, T. et al.
2019.

44 times in the log-average of room temperature Li-ion
conductivity [131]. This workflow for optimizing solid-state
batteries has the potential to identify electrolyte formulations that
concurrently enhance battery safety and performance, effectively
addressing challenges like dendrite growth and thermal stability.

5 Challenges and outlook

Nonetheless, there exist several challenges in the application of DL
to battery design. One of the primary hurdles is the availability of
high-quality and large-scale data required for training DL models.
The creation of comprehensive datasets including diverse battery
chemistries, materials, and operating conditions is usually a
significant and formidable task. Also, lack of adequate data can
lead to overfitting, negatively affecting accuracy. Specifically,
battery architectures are often so complex that they require
representation with a dimensionality that may exceed the number
of samples in the training dataset. Such scenarios can result in
poor generalization to unobserved battery architectures, especially
when the size of DL model becomes large. Another challenge
revolves around model interpretability. DL models, particularly
deep neural networks, are frequently perceived as black boxes. In
scientific research, understanding the rationale behind a specific
prediction of the model is crucial The development of
interpretable DL models for battery design remains a challenge.
Transferability is yet another aspect that needs to be improved
since battery systems exhibit a high degree of diversity. Models
trained on one chemistry or configuration may not easily extend
to others. Formulating transferable DL models applicable across
different battery types presents a significant challenge.
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Furthermore, there is an urgent need to reduce the computational
cost associated with training a DL model. DL models require
substantial computational resources and time for training.
Mitigating these resource constraints, particularly for smaller
research teams, is pivotal in practice. Last but not least, ensuring
data privacy and security is an emerging concern in most battery
research endeavors as numerous battery-related datasets contain
sensitive information, such as proprietary formulations or
experimental details.

Future trends in DL for battery design may prominently feature
multi-objective optimization. Researchers are increasingly drawn
towards concurrently optimizing multiple properties, including
energy density, cycle life, and cost, through the application of deep
reinforcement learning. Furthermore, generative models, such as
GANSs, might be useful for exploring novel battery materials and
designs. These models hold the capability to generate new
candidates possessing the desired properties, thus potentially
expediting innovation. DL models play a guiding role in
automated experimentation and robotics platforms. This
emerging trend has the potential to accelerate material synthesis
and testing, thereby reducing time-to-market for novel battery
technologies. Collaborations between diverse specialists, including
data scientists, materials scientists, electrochemists, and engineers,
are expected to become increasingly popular. Cross-disciplinary
teams are essential for effectively addressing the multifaceted
challenges in battery design. As the field matures, DL applications
in battery design are anticipated to transition from research to
integral components of industrial practices. Battery manufacturers
and energy companies will progressively harness these tools to
drive the development of commercial products. Moreover, battery
design will increasingly prioritize sustainability considerations. DL
stands to aid in optimizing battery designs with a reduced
environmental footprint, encompassing aspects such as recycling
and resource utilization.
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In short, DL holds immense potential for revolutionizing
battery design. Overcoming the challenges associated with data
availability, model interpretability, and resource limitations will be
important in realizing this potential. The prevailing trends suggest
a shift towards more holistic and interdisciplinary approaches,
addressing not only performance but also sustainability and
efficiency in future battery technologies.

6 Conclusions

In conclusion, the application of DL techniques has demonstrated
considerable potential to revolutionize the field of battery design.
By integrating DL algorithms with traditional experiments and
simulations, researchers can accelerate the discovery and
characterization of new electrodes and electrolytes, leading to the
development of high-performance batteries with improved
capacity and cycle life. The combination of accurate first-principle
simulation, autonomous synthesis, characterizations, and DL
optimization loop has emerged as a promising approach for
enhancing the efficiency of battery design and reducing the cost of
electric vehicles. Continued exploration of DL algorithms in
battery design holds significant promise for advancing the field of
materials science, computer science, and engineering to mitigate
the impact of climate change.
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